
Matrix: Achieving Predictable Virtual Machine Performance in the Clouds
Ron C. Chiang∗, Jinho Hwang+, H. Howie Huang∗, and Timothy Wood∗

The George Washington University∗ and IBM T.J. Watson Research Center+

Abstract
The success of cloud computing builds largely upon
on-demand supply of virtual machines (VMs) that pro-
vide the abstraction of a physical machine on shared re-
sources. Unfortunately, despite recent advances in virtu-
alization technology, there still exists an unpredictable
performance gap between the real and desired perfor-
mance. The main contributing factors include contention
to the shared physical resources among co-located VMs,
limited control of VM allocation, as well as lack of
knowledge on the performance of a specific VM out
of tens of VM types offered by public cloud providers.
In this work, we propose Matrix, a novel performance
and resource management system that ensures the de-
sired performance of an application achieved on a VM.
To this end, Matrix utilizes machine learning methods -
clustering models with probability estimates - to predict
the performance of new workloads in a virtualized en-
vironment, choose a suitable VM type, and dynamically
adjust the resource configuration of a virtual machine on
the fly. The evaluations on a private cloud, and two pub-
lic clouds (Rackspace and Amazon EC2) show that for
an extensive set of cloud applications, Matrix is able to
estimate application performance with average 90% ac-
curacy. In addition, Matrix can deliver the target per-
formance within 3% variance, and do so with the best
cost-efficiency in most cases.

1 Introduction
In private and public clouds, the so-called Infrastruc-
ture as a Service (IaaS) model offers on-demand cre-
ation of virtual machines (VMs) for different users and
applications, and enables dynamic management of VMs
for maximizing resource utilization in the data centers.
Ideally, a VM shall have three properties: 1) efficiency,
where a significant portion of the program runs without
any intervention from the hypervisor that manages the
VMs; 2) resource control that prevents any program from
gaining the full control of the system resources; and 3)
equivalence, where any program running in a VM “per-
forms in a manner indistinguishable” from an equivalent
real machine [34]. Although virtualization technology
has been improved greatly (its pervasive use in cloud
computing is strong evidence), we have not yet achieved
the vision of “an efficient, isolated duplicate of a real ma-
chine”, that is, a VM shall be able to provide the perfor-
mance close to the desired one.

Take a real world example, before buying a new tablet
computer from an online retailer, one may shop a lo-
cal store like BestBuy to test drive and compare various

products. Nevertheless, any product that the customer
eventually receives from the online retailer will be the
same as what is presented locally. Unfortunately, when
one purchases a VM in the cloud, little guarantee is pro-
vided to ensure an application hosted by the VM would
keep the desired performance, not even mentioning to
achieve the best cost-efficiency.

In this paper, we propose the concept of Relative Per-
formance (RP) as the “equivalence” metric that measures
the ratio between the desired performance and that of
running in a VM. For a workload w, the RP can be for-
mally defined as

RPw =
PVM

Pd
, (1)

where PVM is the performance of the workload w when
running on a VM, and Pd is the desired performance.
The performance is workload dependent and can be mea-
sured as the runtime (e.g., sequence alignment), through-
put (e.g., video streaming), latency (e.g., webpage serv-
ing), etc. The RP that is equal to one means that the
workload delivers the desired performance on the VM.
The goal of Matrix is to deliver the desired performance
while minimizing the resource cost.

In a cloud, many factors such as limited control of
VM allocation and competition from co-located VMs to
shared resources (e.g., CPU and I/O devices) contribute
to hard-to-predict VM performance. To illustrate the
problems on expected performance and operating cost,
we run three benchmarks ranging from I/O intensive,
memory intensive to CPU intensive workloads, both lo-
cally and on Amazon EC2. There are two local physical
machines in this test: PM1 has a 2.93 GHz Intel Core2
Duo processor and 4 GB memory, and PM2 has a 3 GHz
Intel Pentium4 processor with 2 GB memory. The de-
sired performance Pd1 and Pd2 are the performance of
running a given benchmark on PM1 and PM2 respec-
tively. Fig. 1 shows the RPs (in runtime/latency for three
benchmarks) for Pd1 and Pd2 on four EC2 instances1.
Our tests show that the RP for these three benchmarks
can vary dramatically from 18% of the target perfor-
mance to more than three times. Clearly, it is challenging
to know ahead of time for each application which VM
instance provides a good tradeoff between the cost and

1For Amazon EC2 instances, m1.small type equips with 1.7
GB memory and 1 EC2 Compute Unit priced at six cents per hour,
m1.medium 3.75 GB memory and 2 Compute Units at 12 cents per
hour, m1.large 7.5 GB memory and 4 Compute Units at 24 cents per
hour, and the t1.micro has the smallest amount of memory (613 MB)
and CPU resource.

1

0.0

0.5

1.0

1.5

2.0

FS mcf soplex FS mcf soplex

Pd1 Pd2

R
P

Test setting

t1.micro

m1.small

m1.medium

m1.large

3.
1

3.
3

2.
9

3.
7

2.

7

2.
8

2.
7

2.
9

2.
8

Figure 1: The performance for various EC2 instances ranges
from 27% to 3.7 times of the desired performance Pd1 and Pd2.
Each column shows an average of ten runs

performance. Benchmarking an application in the cloud
may alleviate the problem, but it becomes cumbersome
as public cloud providers offer dozens of VM types.

In this work, we propose a performance and re-
source management system, Matrix, that targets at de-
livering predictable VM performance with the best cost-
efficiency. To achieve this goal, Matrix utilizes clustering
models with probability estimates to predict the perfor-
mance of new workloads in a virtualized environment,
chooses a suitable VM type, and dynamically adjusts the
resource configuration of a VM on the fly.

The first contribution is that Matrix can predict ac-
curately how a new workload will perform on different
cloud VM instances. To this end, Matrix first constructs
performance models of a set of representative workloads
that define common application “genes”. Given perfor-
mance models for these applications, we leverage the
support vector clustering (SVC) to quickly classify a
new workload, using soft boundary probability estimates
to infer its “gene” composition. A number of studies
[28, 46, 22, 45] have worked on service-level agreement
(SLA), performance prediction, and anomaly detection
in virtualized environments. The major differences of
Matrix lie in the understanding of the dynamic relation-
ship between resource allocation and the new workload
performance.

The second contribution is that Matrix allocates VM
resource to application in a way that minimizes the cost
while achieving good performance. To this end, Ma-
trix applies an approximate optimization algorithm and
makes use of the characteristics of the kernel functions
of support vector machine (SVM) to find the optimized
resource allocation. More specifically, the support vec-
tor regression (SVR) is used to develop our RP models.
By exploiting gene composition knowledge, Matrix can
do so without knowing a priori application information
within guest VMs.

Third, Matrix is able to handle different cloud envi-
ronments and applications. We conduct a large set of ex-
periments with real cloud applications and ranging from
a single machine, a local cluster, and a virtual cluster, to
evaluate Matrix on both our private cloud and the public
cloud of Amazon EC2 and Rackspace.

In this work, we present three use cases of Matrix:

• Automatic VM configuration. Matrix can adapt
VM settings to the changes in workload, while
maintaining a desired performance and achieving
good cost-efficiency in the cloud.

• VM instance recommendation. With workload
performance models, Matrix recommends the VM
instance that is best suited for specific applications.

• Cloud provider recommendation. Given a new
application, Matrix can also help users to choose an
appropriate VM from different cloud providers.

2 Related Work
Performance Modeling and Analysis has been exten-
sively studied, both in non-virtualized environments [29,
44], and virtualized environments [16, 36, 21, 54, 7].
There are also performance models which target spe-
cific applications or system components. For example,
Li et. al [25] model the performance of parallel ma-
trix multiplication in virtualized environments, and Wat-
son et al. build probability distribution models of re-
sponse time and CPU allocations in virtualized environ-
ments [50]. While we share the same idea on exploiting
machine learning techniques, we further explore the abil-
ity of classification with probability estimates to model
the performance of new workloads.

Automatic Resource Configuration is an important
issue in parallel and distributed systems [24, 38, 15] and
performance monitoring tools [23]. Similarly, various
machine learning techniques have shown promising re-
sults for VM provision and configuration, e.g., cluster-
ing [35], classification [26], reinforcement learning [37].
Also, several works have focused on minimizing oper-
ation cost, for example, Niehörster et al. [31] applies
fuzzy control at runtime, and Kingfisher [41] formulates
the problem as an integer linear program (ILP) and im-
plements a heuristic ILP solver. Most related to our
work are several existing resource configuration frame-
works such as DejaVu [48], JustRunIt [55], and [43]. The
key differences of Matrix lie in a comprehensive frame-
work to predict and maintain the desired performance
of a new workload while minimizing the operating cost.
While DejaVu also handles new applications and adapts
resources to suit new demands, DejaVu uses dedicated
sandbox machines to clone and profile VMs. In contrast,
Matrix utilizes representative models to construct new
workload’s model in an online fashion. Many works aim
to predict resource requirements for cloud applications,
e.g., [13, 14, 18, 49, 51]. Most of them either focus on
single application or ignore the cost-efficiency. On the
other hand, Matrix is able to adapt to new applications
and minimize the operating cost. Also, Matrix deals with
the problem of multi-cloud resource management, which
is shown to be critical in [5]. Performance interference
in virtualized environments is another critical barrier to

2

provide predictable performance. DeepDive [32] utilizes
mathematical models and clustering techniques to detect
interference. DeepDive requires comparing the perfor-
mance from VM clones in dedicated machines. Similar
to [7, 19, 30], Matrix removes this need by including the
interference factors into the performance models.

3 Matrix Architecture
The goal of Matrix is to predict and configure VMs in an
automatic manner so that the applications running within
the VMs would achieve the performance with a close
vicinity of a specific one. We present the architecture of
Matrix in Fig. 2. On the left, Matrix builds both cluster-
ing and RP models of representative workloads and this
task is done offline. There are three steps in this phase:
1) profiling the training set of representative workloads
(presented in Sec. 3.1); 2) tuning the SVM parameters
to find the best model configuration; and 3) training the
classifier and the basic RP models, for later use of the
online module (Sec. 3.2 and 3.3). This offline training
stage builds RP models from our generic benchmarks,
but it can be repeated periodically to include data from
newly added workloads.

Gene
APP

Profiling domain

Workload
signatures

Configure SVM

Train models

Clustering
model

Basic RP
model

Monitoring domain

New workload signatures

RP modeling

Workload composition

Training basic models
(offline)

Predicting RP and adapting resources
(online)

New
APP

RP models

Adapting
resources

Analyze data

RP

New resource
configuration

Figure 2: Matrix Architecture

When a new application is moved to the cloud, Ma-
trix requires only the workload signature when running
on its current infrastructure, which could be either phys-
ical or virtual machines. As shown in the right hand
side of Fig. 2, Matrix can classify these workload signa-
tures compared to the previously trained models. Then,
the system calculates a runtime RP model based on ad-
justed performance estimates and outputs the predicted
RP to the resource allocation module. Next, Matrix will
search for the VM configurations with the minimum cost
to maintain a desired performance (Sec. 3.4). To provide
automatic resource management, we formulate an opti-
mization problem with nonlinear inequality constraints.
For fast response time, Matrix utilizes the Lagrange mul-
tipliers to provide an approximate solution and a bound
to the minimum resource cost.

3.1 Workload Signatures
Matrix first must profile a set of workload “genes” that
indicate how different types of applications will perform
when moved into cloud platforms.

A group of representative applications are firstly se-
lected as “genes” to construct an expert system. Our
selection principle, similar to [2], is to have the ref-
erence workloads as diverse as possible - the result-
ing collection shall cover from CPU-intensive to data-
intensive, and their problem sizes also shall vary from
small to large data volumes. Table 1 summarizes the rep-
resentative applications selected from a few widely used
benchmark suites, e.g., FileBench [27], SysBench [20],
SPEC2006 [10], PARSEC[1], and Cloud9 [4, 8]. Note
that while this set of applications is not optimal by all
means, they provide, as we will see in evaluations, a good
basis for RP modeling. We leave the exploration of dif-
ferent gene applications as future work.

Table 1: Summary of representative applications

Name Description
video server serving a set of video files
web server retrieving web contents and updating log files
file server a mixture of various file I/O operations
OLTP query and update database tables
mcf running simplex algorithm
hmmer pattern searching of gene database
soplex linear program solver
canneal evolutionary algorithm
DS01 to DS15 15 distributed data serving workloads
C01 to C15 15 parallel CPU-intensive workloads

For parallel application, we select a training set that
consists of 15 data-intensive workloads (DS01 to DS15)
and 15 CPU-intensive workloads (C01 to C15). The first
five DS series workloads run Apache Cassandra, a dis-
tributed key-value store, with read/write ratios of 100/0,
75/25, 50/50, 25/75, and 0/100 where the record popu-
larity is in uniform distribution. For DS6 to DS10, they
access Cassandra with same read/write ratios but in the
Zipfian distribution of record popularity. For the number
11 to 15 training workloads, they share the same pattern
and order of read/write ratios in both the first and the
second five groups, but the record popularity is in the lat-
est distribution. The last 15 representative applications
in the training set are CPU-intensive parallel workloads
from Cloud9, a scalable parallel software testing service.
The training set for CPU-intensive parallel workloads are
randomly selected out of 98 different utility traces from
the GNU CoreUtils 6.10 for running Cloud9.

For a basic signature, we take the arithmetic means of
three system parameters - CPU utilization, the amount
of data read and written per second. Since it is insuf-
ficient to use the mean alone to represent a workload
when there is a large variability in the observed data,
we choose the coefficient of variation (C.O.V) as part of

3

the signatures to describe the variability. As prior work
[17, 2] has already shown that the resource allocation of
VMs greatly affects the observed system parameters, we
include the number of VCPUs and the size of memory
in the workload signatures because these two parameters
are frequently used knobs for tuning VM performance.
Furthermore, we also take into account the interference
from co-located VMs. For simplicity, all workload signa-
tures from other VMs are summed up as one background
VM and included in the modeling process.

Dealing with applications running on multiple ma-
chines poses more challenges. The traffic in and out of
each node is critical to data-intensive applications’ per-
formance. The number of nodes is also important for
modeling workload concurrency. In other words, Ma-
trix needs to scale resources horizontally (increasing and
decreasing the number of nodes), as well as vertically
(scaling up and down resources on each node). Thus,
Matrix includes the amount of data flow of each node
and the number of nodes in a cluster as additional pa-
rameters when modeling an application performance on
a set of machines.

3.2 Clustering Method
Matrix needs a workload classifier to identify new work-
loads that are running in the guest VMs. Most of pre-
vious works use a “hard” classifier. That is, the classi-
fier outputs a certain workload without ambiguity. That
method, however, provides little help when dealing with
new workload, which can be very different from any
workload in the training set. To address this problem, we
explore “soft” classifiers in this work, which have soft
boundary and output probability estimates of being each
component in the model. These probability estimates can
be utilized as weights to infer the “gene” composition
of new workloads. Specifically, we utilize a multiclass
SVC with likelihoods provided by a pairwise coupling
method [6]. We use a rigorous procedure to tune and
train classifiers. Our classifiers are built as follows:

Data Scaling avoids the features in larger numeric
ranges dominating those in smaller ranges. In addition,
scaling data into a restricted range can avoid numerical
difficulties during the kernel value calculation [6]. We
scale each attribute in the range of [0, 1].

Parameter Selection: Choosing the optimal parame-
ter values is a critical step in the SVC design. The grid
search method is a common practice in finding the best
configuration of a SVC. That is, the parameter selection
is usually done by varying parameters and comparing ei-
ther estimates of generalization error or some other re-
lated performance measure [11]. When the search ap-
proaches a grid point, it calculates the value of ten-fold
cross validation (CV). In order to save the searching
time, the search firstly starts with a loose grid to iden-

tify regions with good CV values. Then, the search uses
a finer grid to further approach the best configuration.
We conduct the grid search on the following parameters:
1) SVC types: C-SVC [3] and ν-SVC [40, 39]. 2) Ker-
nel functions: Polynomial, sigmoid, and Gaussian radial
basis function (RBF). 3) Constraint violation cost C to
avoid overfitting. C ∈ R+. 4) Kernel width coefficient
γ, which affects the model smoothness. γ ∈ R+. 5)
Variable ν in ν-SVC provides an upper bound on train-
ing errors ν ∈ (0, 1].

Training: Once the best parameter configuration is
decided, the final classifier is trained by using the best
configuration with the whole training data.

In terms of SVC types and kernel functions, the grid
searching results suggest that ν-SVC with RBF ker-
nel outperforms other classifiers and kernel functions.
Therefore, Matrix uses ν-SVC with RBF kernel as the
classifier. ν-SVC has been proved to provide an up-
per bound on the fraction of training errors and a lower
bound of the fraction of support vectors.

3.3 Performance Modeling
The performance modeling has two main procedures:
1) Constructing the building block: Matrix utilizes
the SVR to construct the basic RP models of each
training application. A popular version of SVR is ν-
SVR [40, 39]. Matrix uses ν-SVR with the RBF ker-
nel for the basic RP modeling because the grid searching
results suggest it is better than others. 2) Generating
the performance model: The performance modeling of
representative workloads completes one part of the story.
Our goal is to capture new workloads’ RP models in an
online fashion.

Suppose there are n representative workloads wi, i ∈
{1, . . . , n}. The corresponding performance models are
fi(R), where rj = {x ∈ R | 0 ≤ x ≤ 1} and
R = {r1, . . . , rm} are resource configurations and sys-
tem statistics, j ∈ {1, . . . ,m}. Because all performance
models are built by SVR, the performance models can be
represented as: fi(R) = θ · φ (ri) + θ0, where φ (ri) are
kernel functions, θ0 is the offset vector to the origin, and
θ is the separating vector.

Our classifier then analyzes a new workload wnew and
generates an output {p1, . . . , pn}, where pi are the prob-
ability estimates of being workload wi, i ∈ {1, . . . , n}.
The final performance model of workload wnew is

fnew(R) =

n∑
i=1

pi · fi(R),

where
n∑

i=1

pi = 1.

(2)

In other words, the likelihood pi acts as a weight to con-
trol the fraction of fi in the final model fnew.

4

3.4 Automatic Resource Configuration
Once we obtain a performance model of a new workload
wnew, configuration module starts to find the minimum
allocation for keeping the desired performance.

Let Cj be the cost of resource j, j ∈ {1, . . . ,m}.
Resources are, e.g., the memory size and the number
of VCPUs and VMs. rj is the ratio of resource j on a
physical server that is allocated to the VM. We formulate
the resource configuration problem as an optimization
one with a nonlinear equality constraint:

minimize
R

Fc(R) =

m∑
j=1

Cj × rj

subject to fnew(R) =

n∑
i=1

pi · fi(R) = 1,

n∑
i=1

pi = 1,

rj = {x ∈ R|0 ≤ x ≤ 1},
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

Because both the objective and constraint function are
continuously differentiable2, we utilize the Lagrange al-
gorithm for solving this problem.

Note that the above problem is formulated under the
assumption that rj is the ratio of resource j on a phys-
ical server that is allocated to the VM. However, real
systems usually can not partition resources at an arbi-
trary granularity. For example, the memory allocation
for VMs is usually done in the unit of one megabyte.
If a system has 2 GB memory, the finest possible Rj

values will be {1/2000, 2/2000, . . . , 2000/2000}. As a
result, the system would not be able to use the optimal
resource configuration R∗. Instead, the system needs
to take (dr∗1e, . . . , dr∗me) as the resource configuration,
where the ceiling operation of ri here is defined as tak-
ing the smallest value r′i in the finest possible granularity,
such that r′i ≥ ri. Let the granularity of resource i be di,
i ∈ {1, . . . ,m}. In other words, the miss allocation on
resource i is at most di. Therefore, the upper bound on

the extra resource allocation cost is
m∑
i=1

Ci × di.

4 Implementation
We have implemented and tested Matrix on both a lo-
cal private cloud and two public clouds, namely Amazon
EC2 and Rackspace cloud servers. Fig. 3 summarizes the
work flow of the prototype.

The preparing data block includes parsing, formatting,
and scaling collected traces. The clustering model and
RP models are previously built by the training set offline.
The Matrix online module is controlled by a Linux bash

2One of the properties of the RBF kernel.

shell script combined with a SVM module written in C
and an optimization problem solver in MATLAB. The
tasks of this online module are to 1) collect traces, 2)
analyze workload compositions, and 3) predict current
RP and suggest a configuration to obtain desired perfor-
mance with less cost.

Preparing Data

Traces

SVC-predict

Workload
signatures

Clustering
model

Basic RP
models

Constraint
function & RP

Min resource

Resource
Recommendation

Adjust VM
resources

Performance
modeling

Workload
composition

Sleep till
next

interval

Offline Online

Figure 3: Matrix prototype

The online module is running as a background process
in the host domain, which collects workload signatures
of VMs every second by using xentop. At every minute,
a parser will parse collected data and scale all values
in the range of [0, 1]. The online module then feeds
the scaled trace and clustering model to the SVC-predict
module which outputs the workload composition in pos-
sibilities of representative workloads. These probability
estimates along with the basic RP models become the
running workload’s performance model (Eq. 2). Then,
Eq. 2 is served as the constraint function of the optimiza-
tion problem in Sec. 3.4. Finally, the online module ad-
justs resource allocations and repeats the same procedure
for the next interval.

There are three main differences between the two Ma-
trix prototypes on private and public clouds. First, Matrix
in public clouds can not use xentop to collect traces be-
cause we have no access to the host domain. Instead, we
run top and iostat in every guest domain to collect traces.
Second, Matrix can not arbitrarily adjust resources of an
instance in the public cloud. And, instance types can
only be changed when it is not running. To address this
problem, we adapt Xen-blanket [53] nested virtualization
for some tests.

Prototype performance. The measured running time
from parsing collected trace to output the minimum re-
source recommendation is around 0.6 second where the
optimization solver takes about 70% in the whole pro-
cess. As future work, the running time of the online mod-
ule can be further reduced by implementing the solver in

5

native system without using MATLAB. In addition, Ma-
trix may also be integrated with Monalytics [23] to re-
duce overheads.

5 Evaluations
Testing scenarios. We evaluate Matrix in three scenar-
ios: a single machine, a cluster of physical machines,
and of VMs. Three virtualized environments are used in
our experiments: local Xen virtualized servers, Amazon
EC2 instances3 and Rackspace cloud servers4. We label
Rackspace cloud servers from smallest to the largest as
RS1 to RS7. For example, RS1 has 1 VCPU and 512 MB
memory and RS7 has 8 VCPUs and 30 GB memory. All
tests on public clouds are conducted for at least 30 runs,
with multiple batches that run at different times of day
and on various weekdays and weekends.

In Sec. 5.1, we start the experiments with the single
machine case, which aims to accommodate the testing
applications in a VM such that the workloads perform
closely to the desired one. We mainly use PM1, which
is described in Sec. 1, as the target performance. We have
two local servers for hosting VMs: V S1 and V S2 are
two six-core Intel Xeon CPUs at 2.67 GHz and 2 GHz,
and with 24 and 32 GB memory, respectively. Both ma-
chines are running Linux 2.6.32, Xen 4.0, and NFS over
a Gigabit Ethernet.

In Sec. 5.2, Matrix aims to accommodate the testing
applications in a set of VMs such that the workloads per-
form closely to the desired one. We use a four-node phys-
ical cluster (PC) as the target performance, each of which
has a 1.80 GHz Intel Atom CPU D525 (two physical
cores with hyper-threading) and four GB memory con-
nected on a Gigabit Ethernet. In the local private cloud,
we use the V S2 to host a virtualized cluster (VC). Simi-
lar to the single machine case in Sec. 5.1, the public VCs
are hosted on the Amazon EC2 and Rackspace.

In Sec. 5.3, Matrix targets at accommodating the test-
ing applications in a set of VMs in public clouds such
that the workloads perform closely to the desired one in
a local cloud. We use VCs of 32 and 64 VMs in a local
cloud as the target performance, and study how to config-
ure VCs in Amazon EC2 and Rackspace cloud servers to
achieve similar performance. Each VM has one VCPU
and 1.5 GB memory. This way, we examine the feasibil-
ity of migrating a VC from a private to public cloud while
providing the desired performance with minimized cost.

Cloud applications that are used in this work consist
of Cloudstone, a performance measurement framework
for Web 2.0 [42]; Wikipedia with Database dumps from
Wikimedia foundation [52] and real request traces from
the Wikibench web site [47]; Darwin, an open source

3A full list of Amazon EC2 instance types and prices can be found
at http://www.ec2instances.info/

4A full list of Rackspace cloud servers can be found at
http://www.rackspace.com/cloud/servers/.

version of Apple’s QuickTime video streaming server;
Cloud9 makes use of cloud resources to provide a high-
quality on-demand software testing service; and YCSB
(Yahoo! Cloud Serving Benchmark), a performance mea-
surement framework for cloud serving systems [9].

For YCSB, the experiments use two core workloads:
YCSB1 and YCSB2, both send requests following a Zip-
fian distribution. The major difference between YCSB1
and YCSB2 is the read:write ratio: YCSB1 is an up-
date heavy workload with the read:write ratio of 50:50,
and YCSB2 reproduces a read mostly workload with the
read:write ratio of 95:5. Note that after Sec. 5.2, YCSB1
and YCSB2 are served from multiple nodes. In addition,
YCSB3, YCSB4, and YCSB5 will be added into the test-
ing set as well. YCSB3 is a 100% read workload. 95%
requests of YCSB4 are read operations and mostly work
on the latest records. 95% requests of YCSB5 are also
read operations but it scans within 100 records.

Evaluation metrics. We use three metrics to evalu-
ate the performance of Matrix. To measure the accu-
racy of the models, we define the prediction accuracy as
1− (|predicted value − actual value|/actual value).
That is, the closer to 1 the better.

The goal of Matrix is to achieve a desired VM per-
formance with minimum cost. To this end, we define
two additional metrics: the RP-Cost product (RPC) as
|RP − 1| · (VM Cost), and the Performance Per Cost
(PPC) as RP/VM Cost. In this test, we measure the
cost for purchasing instances on public clouds in dollars.
For RPC, a smaller value is preferred as it indicates small
performance difference and cost, and for PPC, a larger
value is better because of indicating better performance
for the same cost.

5.1 Single Machine Case
Model Composition. We first present how Matrix an-
alyzes applications and composes performance models.
Fig. 4 demonstrates the snapshots taken by Matrix while

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cloudstone

Wiki

YCSB1

YCSB2

Darwin

Cloud9

video server web server file server OLTP mcf hmmer soplex canneal

Figure 4: Application composition examples

applications are running. Let’s take Darwin as an ex-
ample. Darwin is about 67% like video server, 22% like
mcf, 10% like soplex, and the possibilities to be others are
very small. Although Darwin is a video streaming server,
it is not 100% like the video server from the FileBench
in the representatives. The reason is that the video server
only emulates I/O operations and omits many CPU tasks
on a video streaming server, which can be captured by

6

Matrix with suggestion of including mcf and soplex as
part of the Darwin’s workload signature. Therefore,
Darwin’s estimated performance by the composition in
Fig. 4 will be 0.67·fvideo server+0.22·fmcf+0.1·fsoplex+...
(Recall Eq. 2). Similarly, the sample composition of
YCSB1 has a large portion of file server, OLTP, and hm-
mer. Note that these are just sample snapshots, and the
composition ratio depends on the workload intensity and
datasets, and may change over time.

Model Accuracy. We examine Matrix’s accuracy on
predicting new workloads’ RP across different settings
on our local VMs, the Amazon EC2 instances, and the
Rackspace cloud servers. To train the RP models on the
local VMs, we run the training set on PM1 and VMs for
the RPs and training data. We collect 1,000 data points
for each training workload’s performance model. Each
data point is generated by running the workload with a
uniformly randomly configured thread (worker) count (2
to 32), working set size (5 to 32 GB), and resource allo-
cation (1 to 8 VCPUs and 1 to 8 GB memory). Because
hardware heterogeneity potentially affects performance
of cloud applications [12, 33], Matrix also trains models
for working on Amazon and Rackspace, instead of sim-
ply using those trained on the local VMs. The training
process on the public clouds is almost identical to the
one on local VMs, except the part of dynamically con-
figuring resources. Because we can not arbitrarily adjust
resources on the public clouds, the training data are col-
lected from running them on each instance type for 100
times. Note that Matrix needs only a one time training
process for modeling the gene workloads in the VMs.

For the tests on local VMs, we run each configura-
tion for five times, five minutes per run. In Fig. 5, each
column shows the average prediction accuracy and stan-
dard deviation of 30 runs (five runs for six testing ap-
plications). The same testing process is repeated on the
Amazon and Rackspace at three different times and days.
Thus, the public cloud results are averages of 90 runs.

Most of prediction accuracies are higher than 85% and
the average value across all cases is 90.15%. The lo-
cal VM tests on V S2 have a slightly higher accuracy
(91.1%) than those on V S1 do (90%). On the Amazon
EC2, t1.micro has the lowest prediction accuracy due to
big variances on its performance. In general, larger in-
stance types are more stable and usually lead to higher
accuracies. The experiments on Rackspace also show
that larger instances tend to have higher accuracy. Given
the same instance type, HVM instances have lower accu-
racy than paravirtualized VMs, partly due to virtualiza-
tion overheads. The average prediction accuracies across
all Amazon and Rackspace instance types are 89.8% and
90.3% respectively.

All results pass the two-sample t-tests and are stable
across all test environments. Note that we also conduct

the same tests on the training set. The results show that
the training applications can be identified correctly over
95% and their performance estimations have accuracy
higher than 94% across all training applications.

Automatic Resource Configuration. Here, we as-
sume a user wants to keep a desired performance of a
YCSB VM with the minimum resources allocated. We
run YCSB2 for one hour and change workload intensities
every ten minutes. In the first ten minutes, two threads
work on two millions records; The workload intensity is
increased to four threads and eight millions records in
the second period; eight threads and 16 millions records
in the third period; Then, workload intensity is decreased
to four threads and 16 millions records in the fourth pe-
riod; two threads and 16 millions records in the fifth pe-
riod; two threads and two millions records in the last ten
minutes. Fig. 6a shows the corresponding resources and
RPs as the workload intensity changes. Over the hour,
the average resource savings are 37% on CPU and 55%
on memory, when compared to a baseline VM which
keeps using two VCPUs and four GB memory to imi-
tate PM1’s setting. The average performance is 1.06
(closer to the target value) compared to 1.56 provided by
the baseline VM.

In Amazon EC2, we can only change the type of an
instance when it is not running. As a workaround, we
use the Xen-blanket (nested virtualization) in an Ama-
zon EC2 HVM instance (m3.2xlarge). In the one hour
test, the average resource saving is about 5% on mem-
ory, compared to a baseline VM which keeps using one
VCPUs and two GB memory. There is no resource sav-
ing numbers for CPU because the minimum VCPU num-
ber is one in this test. The average RP shown in Fig. 6b
is about 0.95 compared to the one of 0.83 by the base-
line VM. In other words, with the ability of adjusting
resources to accommodate demands, Matrix can keep a
desired performance with as few resources as possible.

Choosing instances among cloud providers. In this
test, Matrix is used to recommend instances for running
a certain workload as close to the desired performance
as possible. The light, medium, and heavy workloads
used here are defined as 4, 16, and 32 threads (or work-
ers) with 8, 16, and 32 GB working set respectively. We
conduct the same tests on Amazon EC2 and Rackspace
cloud servers. Then, we list the most recommended in-
stance types in Table 2 such that running certain work-
loads would be close to the desired performance with
less cost. If the recommended instances on both sides
have the same price, e.g., RS2 vs. m1.small, the one pro-
vides a higher RP will be selected. For the light work-
load intensity, RS3 is the most recommended type to
use, which has the same price as m1.medium at $0.12
per hour. RS3 is chosen because it provides higher RP
with the same price. The performance of YCSB work-

7

60
70
80
90

100

2C4M-VS1
2C4M-VS2

1C2M-VS1
1C2M-VS2

t1.micro
m1.small

m1.medium
m1.large

c1.xlarge
m2.xlarge

m3.xlarge
m3.xlarge

-HVM

m3.2xlarge
m3.2xlarge

-HVM

RS1 RS2 RS3 RS4 RS5 RS6 RS7

A
cc

u
ra

cy
(%

)
Local private servers Amazon EC2 Rackspace cloud servers

Figure 5: Accuracies on predicting performance. The labels aCbM-VSc on the leftmost four columns mean these tests are done
on a VM with a VCPU and b GB memory hosted by our local machine V Sc. The rightmost seven labels, RS1 to RS7, represent
Rackspace instances from the smallest to the biggest one. Other labels represent Amazon instance types used

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50 60

Time (min)

VCPU

Mem (GB)

RP

(a) Local

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50 60

Time (min)

VCPU Mem (GB) RP

(b) Amazon EC2

Figure 6: RP changes as resources and workload intensity
change. Intensities are changed every ten minutes

load is sensitive to the heap size because it affects the
amount of cached contents and the frequency of flushing
the cached requests in Cassandra. This effect would be
more obvious if there are more write operations. There-
fore, the recommendation for light YCSB1 is m1.small
against RS2 because its memory space is larger.

Table 2: Most recommended instance types for running certain
workloads with desired performance and less cost

Applications Light Medium Heavy
Cloudstone RS3 RS3 m1.large

Wiki RS3 m1.medium m1.large
YCSB1 m1.small m1.medium m1.medium
YCSB2 RS2 m1.medium m1.medium
Darwin RS3 RS3 m1.medium
Cloud9 RS3 RS3 RS3

For the medium workload intensity, the recommended
Rackspace instances for YCSB1 and YCSB2 are both
RS4, where the recommended Amazon instances are
m1.medium. Although RS4 provides higher perfor-
mance than m1.medium for these workloads, RS4 is
more expensive and its RPs here are more than one than
m1.medium. Therefore, the recommended instances for

medium YCSB1 and YCSB2 are both m1.medium. For
the rest of the applications with medium workload inten-
sity, we mostly select the one with higher RP between
RS3 and m1.medium.

For the heavy workload intensity, Cloudstone and
Wiki choose m1.large against RS4 because of the higher
performance with the same price. The situation for the
heavy YCSB is the same as its medium case. The case
of Darwin chooses m1.medium because Darwin does
not need more CPU cores but more memory would be
helpful. On the other hand, the heavy Cloud9 desires
more CPU cores than memory. Thus, the heavy Cloud9
chooses RS3 over m1.medium.

Choosing the right instance types to minimize cost and
optimize performance for a certain workload requires so-
phisticated analysis on application and platform charac-
teristics. Such processes could be very time consuming
without the help of Matrix.

5.2 Multi-Machine Case
Many cloud applications are designed to work on multi-
ple computers and communicate via a network. In this
section, we first start the tests on a local VC. For pro-
filing the system under different resource configurations,
the number of VMs in a VC ranges from one, two, four to
eight; the VCPU numbers on one VM is varied from one
to four; and the size of memory on one VM is also varied
from one to four GB. In other words, we have 64 VC set-
tings in terms of the VM numbers, VCPUs, and memory
sizes. We assume all VMs in a cluster are identical and
leave the heterogeneous or asymmetric clusters as future
work. We collect required profiling statistics from five
runs of each representative application on all 64 VC set-
tings. In order to capture the dynamics of various work-
load intensities, training applications will be uniformly
randomly configured with thread/worker numbers from
2 to 128 and working set sizes from 20 to 100 GB in
each run, in total 9,600 data points.

For our tests on the public cloud, the instance types
included as the Amazon VC instances for training and
testing are t1.micro, m1.small, m1.medium, m1.large,
m1.xlarge, and m2.xlarge. Similar to the local VC test,
the number of VMs in an Amazon VC ranges from one,
two, four to eight. Thus, we have 24 VC settings on EC2.
The workload intensity is changed for profiling in the

8

same way as it is in profiling local VCs. We also profiled
VCs on Rackspace. The instance types used are RS1 to
RS5. The rest processes and settings on Rackspace are
similar to what we did on Amazon.

Prediction Accuracy. We first explore the accuracies
on predicting RPs at clusters with different VM types and
various numbers of VMs. Because of the space limit, we
omit some figures. In general, the mean accuracy across
all cases is 90.18% with a standard deviation of 2.55,
where the mean accuracies on Amazon and Rackspace
are 90.05% and 90.3% respectively.

From the accuracy tests, we found that Matrix has rel-
atively good prediction accuracies on some applications,
e.g., YCSB3 and YCSB4. Take the YCSB3, a read only
testing workload in Zipfian distribution, as an example.
Matrix effectively identifies this as an 100% read work-
load with an over 95% possibility. Among three possible
distributions for pure read requests, Matrix recognizes
this workload has an over 75% possibility to follow Zip-
fian distribution. This contributes to a relatively high ac-
curacy for YCSB3.

To further analyze influences of representative appli-
cations in the training set, we remove five workloads at
a time from the training set. Then, all models are rebuilt
from the new training set. Next, we examine the accura-
cies on predicting RPs of applications in the testing set
on a four-VM cluster whose VMs identically have four
VCPUs and four GB memory. This test is repeated three
times and the average accuracies are reported in Fig. 7.
We remove CPU-intensive training applications first, the
YCSB5 shows larger degradation than the others in the
beginning because it consumes more CPU in scanning
records when processing requests. When we start to re-
move data-intensive training workloads (the training set
size is less than 15), all three testing applications drop
dramatically. When we reduce the training size from ten
to five, YCSB1 and YCSB5 both drop more than 20%
because key genes (the 50/50 and 100/0 workload in the
Zipfian distribution for YCSB1 and YCSB5 respectively)
are removed. YCSB4 holds higher than the others at the
training size of five because the 100/0 workload in the
latest distribution, which represents most of the YCBS4,
is still kept in the final five.

40

60

80

100

30 25 20 15 10 5

A
cc

u
ra

cy
 (%

)

Size of the training set

YCSB1

YCSB2

YCSB3

YCSB4

YCSB5

Figure 7: Accuracies on predicting RP decrease as the size of
training set shrinks

VC in Private Cloud. We also verified automatically
configuring a VC’s resources to maintain the desired per-
formance. The test is similar to the one in Fig. 6a, but
has more dimensions in resources, e.g., number of ma-
chines, and workloads, e.g., changing workload types.
Due to the space limit, we omit some figures of this test.
In brief, Matrix tracks workload activities closely and is
able to change VM configuration quickly and keep RPs
on track.

VC in Public Clouds. Here we will only change the
type of instance. We did not use Xen-blanket here due
to concern over the overhead of nested virtualization. In
this case, we run the tests in three steps: 1) Each applica-
tion in the testing set is executed for ten minutes on a VC
with a randomly uniformly selected type and the number
of VMs from one to eight. 2) Matrix collects required
system statistics, and recommends a configuration. 3)
The same application then runs on a cluster of instances
closest to the recommended configuration. We repeat the
above steps at the weekday daytime, the weekday night-
time, and the weekend. In addition, we change workload
intensity from light, medium, and heavy for each testing
application.

Fig. 8 shows the average RPs and standard deviations
when we re-run testing cases with the recommended con-
figurations as well as three fixed size VCs. Each column
shows the average RP of 45 runs. Fig. 8a and Fig. 8b are
results from Amazon and Rackspace respectively. All the
RPs from Matrix spread between 0.88 and 1.16 with the
mean of 1.02 across all cases. As it is shown in Fig. 8, us-
ing configurations suggested by Matrix makes the aver-
age RPs closer to one and smaller in variance than using
the three static configurations. It leads to a low average
RP value of 0.82 when using 4×m1.small or 4×RS2
all the time because the medium and the heavy work-
loads are too intensive for it. In general, Matrix uses
4 × m1.small or 4 × RS2 at light workloads but uses
more powerful instances when workload is heavier. The
average RP of all 4 ×m1.medium and 4 × RS3 cases
is close to one but its standard deviation is 0.1, which is
more than twice of the one of Matrix (0.04). The large
variance in RPs of the 4 × m1.medium and 4 × RS2
case comes from over-provisioning at the light workload,
inadequacy at the heavy one, and the difference in the
workload mix, even at the appropriate intensity. For ex-
ample, Matrix uses 3 × m1.medium for YCSB1 and
2×m1.large for YCSB5 at the medium workload which
makes RPs closer to one than the 4×m1.medium does.
When the workload is heavy, Matrix uses 2×m1.large
or 2 × RS4 most of the time. Thus, although statically
using 4×m1.large and 4×RS4 has small variance val-
ues, the average RP in this case increases to 1.14.

Cost Efficiency. Here we examine the RPC and PPC
values to see the cost-efficiency of each configuration.

9

0.6

0.8

1.0

1.2

1.4

YCSB1 YCSB2 YCSB3 YCSB4 YCSB5

R
P

Matrix 4 X m1.small 4 X m1.medium 4 X m1.large

(a) Amazon

0.6

0.8

1.0

1.2

1.4

YCSB1 YCSB2 YCSB3 YCSB4 YCSB5

R
P

Matrix 4 X RS2 4 X RS3 4 X RS4

(b) Rackspace

Figure 8: RPs when using Matrix and three static cluster set-
tings on Amazon and Rackspace

To ease comparison, the RPC and PPC values in Ta-
ble 3 are normalized to Matrix’s . A smaller RPC means
more cost-efficient while keeping desired RPs, and on
the other hand, a higher PPC means more RP can be
achieved for the same cost. In both the tests on Amazon
and Rackspace, Matrix outperforms other static settings
in both metrics.

Table 3: Cost efficiency (RPC and PPC) of Matrix and three
static configurations on Amazon and Rackspace respectively

Amazon EC2
Matrix 4 × m1.small 4 × m1.medium 4 × m1.large

RPC 1.00 24.00 20.41 143.02
PPC 1.00 0.84 0.47 0.33

Rackspace cloud servers
Matrix 4 × RS2 4 × RS3 4 × RS4

RPC 1.00 25.33 18.67 90.54
PPC 1.00 0.78 0.68 0.52

5.3 Private to Public Cloud
In this case, we evaluate the case of migrating a virtual
cluster from private to public cloud. We make the num-
ber of VMs per cluster larger than previous tests in order
to test the scalability. Because our Rackspace account
has a limitation on memory size at 64 GB, the results of
public cloud here are all obtained from the Amazon EC2.
We use 32- and 64-VM local VCs (VC32 and VC64)
in this case. These local VCs are hosted on four V S2
servers. Each VM in one local VC has one VCPU and 1.5
GB memory, and each V S2 hosts 16 VMs. The training
procedure on EC2 is almost the same as the previous one
in Sec. 5.2, except that we extend the number of VMs to
32 and 64 in the procedure. We then verify the predic-
tion accuracies in Amazon VCs. Because of the space
limit, we omit some figures of this test. The average ac-
curacy across different clusters is 0.89 with the standard
deviation of 0.03.

We also make Matrix to recommend EC2 configu-
rations comparable to the 32- and 64-VM local VCs
for running the light, medium, and heavy testing work-
loads, which have 8, 32, and 64 threads and 80, 160,
and 320 GB working set size respectively. We run each
testing application and intensity for 30 times on a VC
with 32 × m1.xlarge instances for Matrix to find the
matched configurations. In general, Matrix mostly uses
30×m1.medium, 24×m1.large, and 20×m1.xlarge
instances for the VC32 at the light, medium, and heavy
workloads respectively. When the cluster size increases
from 32 to 64, Matrix makes the EC2 cluster to use
more instances correspondingly. The configuration for
the light workload is changed from 30×m1.medium to
64 × m1.medium. The configurations for the medium
and heavy workloads become 44 ×m1.large and 36 ×
m1.xlarge respectively. Using the suggested configura-
tions gives average RPs of 1.02 with the standard devi-
ations of 0.07 across different workload intensities. The
RPs for all the cases spread between 0.88 and 1.16 with
the mean of 1.03.

We also verified the PPC and RPC values of Matrix in
this test. Due to the space limit, we omit a table here. Ac-
cording to the RPC values, Matrix costs much less than
the static EC2 VC settings, especially at the VC64 tests.
Further, Matrix demonstrates better PPC values than the
static settings, which indicates a good performance-cost
efficiency. The PPC values also show that using power-
ful instances may be not cost-efficient although they do
provide better performance.

6 Conclusion
In this paper, we have presented Matrix, a performance
prediction and resource management system. Matrix uti-
lizes clustering methods with probability estimates to
classify new cloud workloads and provide advice about
what instance types will offer the desired performance
level and the lowest cost. Matrix uses machine learning
techniques and an approximation algorithm to build per-
formance models, and uses them for managing on-line
resources when applications are moved to the cloud. We
demonstrated that our models have high accuracy, even
when transitioning a distributed application from a clus-
ter of physical machines to a set of cloud VMs. Matrix
helps to keep a desired performance in the cloud while
minimizing the operating cost.

As future work, Matrix may be extended to study the
mapping from a local storage to a cloud one, such as the
Amazon EBS. The cost model in Matrix could be more
complete by including the charge on data usage. Also,
we may expand the load balancing ability of Matrix to
handle heterogeneous or asymmetric cluster machines
and workload intensities.

10

References
[1] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University, January 2011.

[2] J. L. Bonebakker. Finding representative workloads for com-
puter system design. Technical report, Mountain View, CA, USA,
2007.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, COLT ’92, pages
144–152, New York, NY, USA, 1992. ACM.

[4] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In Proceed-
ings of the sixth conference on Computer systems, EuroSys ’11,
pages 183–198, New York, NY, USA, 2011. ACM.

[5] R. Buyya, J. Broberg, and A. M. Goscinski. Cloud Computing
Principles and Paradigms. Wiley Publishing, 2011.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1–27:27, 2011. Software available at http:
//www.csie.ntu.edu.tw/˜cjlin/libsvm.

[7] R. C. Chiang and H. H. Huang. Tracon: interference-aware
scheduling for data-intensive applications in virtualized environ-
ments. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC
’11, pages 47:1–47:12, New York, NY, USA, 2011. ACM.

[8] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea.
Cloud9: a software testing service. SIGOPS Oper. Syst. Rev.,
43(4):5–10, Jan. 2010.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In Pro-
ceedings of the 1st ACM symposium on Cloud computing, SoCC
’10, pages 143–154, New York, NY, USA, 2010. ACM.

[10] S. P. E. Corporation. Spec cpu2006. http://www.spec.
org/cpu2006/.

[11] K. Duan, S. Keerthi, and A. N. Poo. Evaluation of simple perfor-
mance measures for tuning svm hyperparameters. Neurocomput-
ing, 51(0):41 – 59, 2003.

[12] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers,
and M. M. Swift. More for your money: exploiting performance
heterogeneity in public clouds. In Proceedings of the Third ACM
Symposium on Cloud Computing, SoCC ’12, pages 20:1–20:14,
New York, NY, USA, 2012. ACM.

[13] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fon-
seca. Jockey: Guaranteed job latency in data parallel clusters. In
Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 99–112, 2012.

[14] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size fits all:
Automatic cluster sizing for data-intensive analytics. In Proceed-
ings of the 2Nd ACM Symposium on Cloud Computing, SOCC
’11, pages 18:1–18:14, 2011.

[15] Z. Hill, J. Rowanhill, A. Nguyen-Tuong, G. Wasson, J. Knight,
J. Basney, and M. Humphrey. Meeting virtual organization per-
formance goals through adaptive grid reconfiguration. In Grid
Computing, 2007 8th IEEE/ACM International Conference on,
pages 177–184, 2007.

[16] A. Iosup, S. Ostermann, M. Yigitbasi, R. Prodan, T. Fahringer,
and D. H. J. Epema. Performance analysis of cloud computing
services for many-tasks scientific computing. Parallel and Dis-
tributed Systems, IEEE Transactions on, 22(6):931–945, 2011.

[17] R. K. Jain. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. Wiley, 1 edition, Apr. 1991.

[18] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Row-
stron. Bridging the tenant-provider gap in cloud services. In
Proceedings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, pages 10:1–10:14, 2012.

[19] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu.
An analysis of performance interference effects in virtual envi-
ronments. In In Proceedings of the IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS),
2007.

[20] A. Kopytov. Sysbench. http://sysbench.
sourceforge.net/index.html.

[21] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao. Application
performance modeling in a virtualized environment. In High Per-
formance Computer Architecture (HPCA), 2010 IEEE 16th Inter-
national Symposium on, pages 1 –10, 2010.

[22] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta.
Modeling virtualized applications using machine learning tech-
niques. In Proceedings of the 8th ACM SIGPLAN/SIGOPS con-
ference on Virtual Execution Environments, VEE ’12, pages 3–
14, New York, NY, USA, 2012. ACM.

[23] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and
M. Wolf. Monalytics: online monitoring and analytics for man-
aging large scale data centers. In Proceedings of the 7th inter-
national conference on Autonomic computing, ICAC ’10, pages
141–150, New York, NY, USA, 2010. ACM.

[24] S. Lacour, C. Perez, and T. Priol. Generic application description
model: toward automatic deployment of applications on compu-
tational grids. In Grid Computing, 2005. The 6th IEEE/ACM In-
ternational Workshop on, pages 4 pp.–, 2005.

[25] H. Li, G. Fox, and J. Qiu. Performance model for parallel matrix
multiplication with dryad: Dataflow graph runtime. In Cloud and
Green Computing (CGC), 2012 Second International Conference
on, pages 675–683, 2012.

[26] M. Maurer, I. Brandic, and R. Sakellariou. Self-adaptive and
resource-efficient sla enactment for cloud computing infrastruc-
tures. In Cloud Computing (CLOUD), 2012 IEEE 5th Interna-
tional Conference on, pages 368–375, 2012.

[27] R. McDougall, J. Crase, and S. Debnath. Filebench. http:
//sourceforge.net/projects/filebench/.

[28] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in the
xen virtual machine environment. In Proceedings of the 1st
ACM/USENIX international conference on Virtual execution en-
vironments, VEE ’05, pages 13–23, New York, NY, USA, 2005.
ACM.

[29] Y. Nakajima, Y. Aida, M. Sato, and O. Tatebe. Performance
evaluation of data management layer by data sharing patterns for
grid rpc applications. In Euro-Par 2008 Parallel Processing, vol-
ume 5168 of Lecture Notes in Computer Science, pages 554–564.
Springer Berlin Heidelberg, 2008.

[30] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing
performance interference effects for qos-aware clouds. In Pro-
ceedings of the 5th European conference on Computer systems,
EuroSys ’10, pages 237–250, New York, NY, USA, 2010. ACM.

[31] O. Niehörster, A. Brinkmann, A. Keller, C. Kleineweber,
J. Krüger, and J. Simon. Cost-aware and slo-fulfilling software
as a service. Journal of Grid Computing, 10:553–577, 2012.

[32] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bian-
chini. Deepdive: Transparently identifying and managing perfor-
mance interference in virtualized environments. In Proceedings
of the 2013 USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’13, pages 219–230, 2013.

11

[33] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui.
Exploiting hardware heterogeneity within the same instance type
of amazon ec2. In Proceedings of the 4th USENIX conference
on Hot Topics in Cloud Ccomputing, HotCloud’12, pages 4–4,
Berkeley, CA, USA, 2012. USENIX Association.

[34] G. J. Popek and R. P. Goldberg. Formal requirements for virtu-
alizable third generation architectures. Commun. ACM, 17:412–
421, July 1974.

[35] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and
N. Sharma. Towards autonomic workload provisioning for enter-
prise grids and clouds. In Grid Computing, 2009 10th IEEE/ACM
International Conference on, pages 50–57, 2009.

[36] L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and N. J.
Wright. Evaluating interconnect and virtualization performance
for high performance computing. In Proceedings of the second
international workshop on Performance modeling, benchmarking
and simulation of high performance computing systems, PMBS
’11, pages 1–2, New York, NY, USA, 2011. ACM.

[37] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin. Vconf: a reinforce-
ment learning approach to virtual machines auto-configuration.
In Proceedings of the 6th international conference on Autonomic
computing, ICAC ’09, pages 137–146, New York, NY, USA,
2009. ACM.

[38] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen. Autonomic
live adaptation of virtual computational environments in a multi-
domain infrastructure. In Autonomic Computing, 2006. ICAC ’06.
IEEE International Conference on, pages 5–14, 2006.

[39] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and
R. C. Williamson. Estimating the support of a high-dimensional
distribution. Neural Comput., 13(7):1443–1471, July 2001.

[40] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett.
New support vector algorithms. Neural Comput., 12(5):1207–
1245, May 2000.

[41] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware
elasticity provisioning system for the cloud. In Distributed Com-
puting Systems (ICDCS), 2011 31st International Conference on,
pages 559 –570, june 2011.

[42] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,
H. Wong, A. Klepchukov, S. Patil, A. Fox, and D. Patter-
son. Cloudstone: Multi-platform, multi-language benchmark and
measurement tools for web 2.0. In The first workshop on Cloud
Computing and its Applications, CCA ’08, 2008.

[43] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem,
P. Kokosielis, and S. Kamath. Automatic virtual machine config-
uration for database workloads. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, SIG-
MOD ’08, pages 953–966, New York, NY, USA, 2008. ACM.

[44] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity
for performance prediction. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems
2007, EuroSys ’07, pages 31–44, New York, NY, USA, 2007.
ACM.

[45] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Ra-
jan. Prepare: Predictive performance anomaly prevention for
virtualized cloud systems. In Distributed Computing Systems
(ICDCS), 2012 IEEE 32nd International Conference on, pages
285 –294, june 2012.

[46] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell. Modeling virtual
machine performance: challenges and approaches. SIGMETRICS
Perform. Eval. Rev., 37(3):55–60, Jan. 2010.

[47] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload
analysis for decentralized hosting. Elsevier Computer Networks,
53(11):1830–1845, July 2009. http://www.globule.
org/publi/WWADH_comnet2009.html.

[48] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini.
Dejavu: accelerating resource allocation in virtualized environ-
ments. In Proceedings of the seventeenth international confer-
ence on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’12, pages 423–436, New York,
NY, USA, 2012. ACM.

[49] A. Verma, L. Cherkasova, and R. H. Campbell. Aria: Automatic
resource inference and allocation for mapreduce environments.
In Proceedings of the 8th ACM International Conference on Au-
tonomic Computing, ICAC ’11, pages 235–244, 2011.

[50] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and
Z. Wang. Probabilistic performance modeling of virtualized re-
source allocation. In Proceedings of the 7th international con-
ference on Autonomic computing, ICAC ’10, pages 99–108, New
York, NY, USA, 2010. ACM.

[51] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Orchestrating
the deployment of computations in the cloud with conductor. In
Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation, pages 367–381. USENIX,
2012.

[52] Wikimedia Foundation. Wikipedia:Database download.
http://en.wikipedia.org/wiki/Wikipedia:
Database_download.

[53] D. Williams, H. Jamjoom, and H. Weatherspoon. The xen-
blanket: virtualize once, run everywhere. In Proceedings of the
7th ACM european conference on Computer Systems, EuroSys
’12, pages 113–126, New York, NY, USA, 2012.

[54] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy. Profiling
and modeling resource usage of virtualized applications. In Pro-
ceedings of the 9th ACM/IFIP/USENIX International Conference
on Middleware, Middleware ’08, pages 366–387, New York, NY,
USA, 2008. Springer-Verlag New York, Inc.

[55] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and
Y. Turner. Justrunit: experiment-based management of virtu-
alized data centers. In Proceedings of the 2009 conference on
USENIX Annual technical conference, USENIX’09, pages 18–
18, Berkeley, CA, USA, 2009. USENIX Association.

12

