
PicFS: The Privacy-enhancing Image-based
Collaborative File System

Chris Sosa Blake C. Sutton
Department of Computer Science

University of Virginia
{sosa, bcs8d}@cs.virginia.edu

H. Howie Huang
Department of Electrical and Computer Engineering

George Washington University
howie@gwu.edu

Abstract—Cloud computing makes available a vast amount of
computation and storage resources in thepay-as-you-go manner.
However, the users of cloud storage have to trust the providers
to ensure the data privacy and confidentiality. In this paper, we
present the Privacy-enhancing Image-based CollaborativeFile
System (PicFS), a network file system that steganographically
encodes itself into images and provides anonymous uploads
and downloads from a media sharing website. PicFS provides
plausible deniability by preventing traffic and image analysis
by any third party from revealing the existence of PicFS or
compromising its data. Because all accesses are anonymized,
users of PicFS are dissociated from their data, which protects
users against being compelled to release their keys. For further
security and ease of use, we develop a method for automatically
generating a large set of non-suspicious images to serve as input
to the system. Our prototype leverages a number of existing
technologies, including the F5 algorithm for steganography,
Quick-Flickr for Flickr API access, Tor for anonymization, and
FUSE-J for user-level filesystem calls. We show that the PicFS
is indeed practical as the prototype demonstrates satisfactory
performance in the real-world environment.

I. I NTRODUCTION

Today online file storage (e.g., Google Docs and Flickr)
allows easy backup, sharing, and collaboration on photos, doc-
uments, spreadsheets, presentations, etc. However, the users of
online services for storing files currently have an all-or-nothing
security choice: they can either compromise all of their data
and its structure by using the service, or compromise nothing
by opting out completely. Although encryption can protect the
contents of data in this situation, it cannot hide the existence
of hidden content - an equally important issue. For example,
a host uninterested in user privacy could ban encrypted files
above a certain size, or altogether. A host could choose to
reveal encrypted data to a third party with the resources to
break the encryption. Finally, an attacker with unauthorized
access to the host could access the data. For these reasons,
users of online storage need self-enforcing privacy - security
for their files that protects not only the content and structure
of data, but also its very existence.

In this paper, we present the Privacy-enhancing Image-
based Collaborative File System (PicFS), a network filesystem
that allows writes only by its owner and allows sharing to
other designated individuals. PicFS achieves strong online
privacy through hiding the existence of hidden data, that is,
plausible deniabilityintroduced in [1]. In PicFS, both inodes

and data blocks are steganographically encoded into images
and anonymously uploaded and downloaded from a media-
sharing host. Because all accesses are anonymized, users of
PicFS are dissociated from their data, which protects users
against being compelled to release their keys. This is of
special importance to allow users to share files and information
without fear of censorship and retribution.

We develop these ideas by bringing plausible deniability to
every step of an online steganographic filesystem. Specifically,
PicFS targets four key issues. First, in order to mimic ”normal”
access patterns to Flickr, we study a list of popular Flickr ap-
plications for comparison with PicFS’s access behavior, asour
system can use an open API to communicate with Flickr [2].
Second, in addition to normalizing access patterns to Flickr, we
further enhance PicFS with anonymized accesses. We leverage
Tor’s onion routing technology to provide an additional layer
of security for the user without sacrificing plausible deniability.
Third, we address the logistics of finding a large number of
believable images to use as input to the filesystem. This issue
is crucial for plausible deniability and secure steganography -
the system must not use a set of images that is very unlikely to
appear on a Flickr account, and it cannot use images available
elsewhere without the risk of image comparison revealing the
use of steganography. Since the filesystem is also log-based,
even small filesystems require a large pool of suitable images,
as a new image is needed for every change. PicFS attacks this
problem by automatically selecting ”interesting” frames from
user-provided home videos to provide a never-ending sourceof
believable images available only to the user. Finally, because
online storage tends to cause undesirably long latencies, we
explore the tradeoffs of an on-disk cache to mitigate network
delays and overhead from steganography.

The idea of a steganographic filesystem is not new, although
few prototypes exist. For example, StegFS is a steganographic
filesystem [3] which uses the free memory blocks in a local
filesystem to store information, but it has persistency problems
as free memory blocks can be re-allocated at any time.
In addition, this filesystem does not have the means to be
shared covertly. Our system PicFS is most closely related to
CovertFS, a Web-Based Covert File System [1]. However,
there is yet to be a prototype or evaluation of CovertFS
and so it is unclear whether such a system can achieve the
original goal of strong privacy. In PicFS, we design and



implement a number of key components that are not only
missing from CovertFS but crucial to the success of PicFS,
e.g., automated image generation, anonymized access patterns,
and filesystem optimizations. In this paper, we show that
the PicFS is indeed practical as the prototype demonstrates
satisfactory performance results in the real-world environment.

The rest of this paper is organized as follows. Section 2
explains the design of PicFS and describes algorithms used
with video sequences in order to realize PicFS. Section 3 goes
over the implementation of PicFS and the image generation.
Section 4 presents an evaluation of the implementations of
PicFS and the image generation. Section 5 presents the related
work in the design of PicFS. Section 6 summarizes the work
and discusses future research directions.

II. D ESIGN

The design of PicFS can be broken into two distinct parts:
image generation and filesystem design.

A. Image Generation From Video

It is important for plausible deniability that the input images
to PicFS be unique and not arouse suspicion. One approach to
this problem is to ask the user to provide a group of pictures
- however, the log-based filesystem requires a very large
image set. To solve this problem, PicFS uses user-provided
home videos to generate the large number of images it needs
for steganography. Since many modern digital cameras have
video capture features, original footage is a perfect and never-
ending source of plausible, unique images. Home videos of
all quality levels and subjects are very common. In addition,
each sequence of video is unique to the user and cannot be
found elsewhere for comparison against the encoded version.

Since we want to extract a large number of plausible
images from a variety of videos, we mix and match from
previous video shot detection algorithms to create the most
general, domain-independent method that suits our purpose.
For each input video, the difference values using three different
metrics are computed between consecutive frames. We use
the L1 distance, the Chi-squared difference in the intensity
histograms, and the number of edges detected with the Sobel
edge filter [4] as our metrics. Each measure is sensitive to some
type of noise present in many videos, so the other metrics
are chosen to compensate for this effect. For example, the
L1 distance is very sensitive to motion while the histogram
difference is not, and the histogram difference is sensitive to
lighting changes, while the L1 distance and the edge detector
are more robust to this type of noise.

To process a home video, we first compute the differences
between consecutive frames for each metric. Once these
difference vectors are computed, we average the results and
select interesting frames from the resulting distributionusing
an adaptive threshold. Based on the difference statistics in a
window of surrounding frames, the threshold varies across
each video sequence and each video, requiring no manual
parameter setting. The size of the window affects the number
of frames selected from the video.

B. The Filesystem

Our design is based on the Second Extended Filesystem
(Ext2) [5]. We chose Ext2 over Ext3 and Ext4 since many
other filesystems including Ext3 are based on the structure of
Ext2. Since we are mostly concerned with the structure and
not additional services such as the Log introduced in Ext3,
Ext2 is a good choice.

We define the following Attacker-Centric Threat Model. The
attacker we are concerned with is the one who has access to
all images on the media-sharing service and also can snoop
on the network and detect what and to whom a client sends
a message. We address this attacker in our evaluation section.
We assume that the attacker does not have access to a client’s
machine.

In order to support our goal of plausible deniability and
address our threat model we must provide:

1) An efficient mapping between filesystem blocks and
images;

2) File access traffic that does not draw more attention than
other applications using the API of a media sharing site.

The first point is intrinsic to filesystems - it must be
mountable and provide a way to find files. The second point,
normalizing access patterns, supports plausible deniability and
addresses our threat model. The following sections show our
design and how it addresses these issues.

1) The Superblock and the Allocation Table:In Ext2, the
first portion of memory on disk is known as the superblock.
From the superblock, a filesystem knows where to find free
blocks, how to find inodes that correspond to the head of a
file and how to find data blocks. However, for PicFS most of
these are unnecessary. First, since PicFS draws free memory
blocks from generated images, PicFS cannot track free blocks.
Instead, PicFS generates images as needed from a pool. PicFS
further combines the other functions of the superblock intoan
allocation table - a data structure that links inode numbersto
paths within the mounted filesystem and their corresponding
image names. The allocation table also links the data block
numbers to image names. Thus, given an inode number, we
can find which path it refers to on a mounted filesystem
and the image that corresponds to the inode block on the
media sharing service. We can also find the image names of
the corresponding data blocks. Figure 1 is an example of an
allocation table. Note that keeping the filesystem paths within
the table improves performance as it avoids having to search
a directory hierarchy to locate the image file for an inode.
To scale up the design to a large number of files, we shall
investigate new techniques (e.g., hash, embedded DB) as part
of future work to improve the search performance.

2) Mapping Blocks to Images:To structure inodes, we
use the Ext2 design, which includes meta-information such
as the file size, ownership, and data block locations. All
filesystem information including that of the allocation table
is stored within the media sharing service. We have a one-
to-one mapping between blocks in the filesystem and images
stored on the media sharing service.



Fig. 1. An allocation table populated with inode and data information.

Typical photo sizes on media sharing services range from
40KB to 300KB and current steganographic allow embedding
of about 10% of data [1]. This allows for a minimum block
size of up to 4 KB. Since this filesystem is based on Ext2,
it relies on a single fixed value for the block size. Our
implementation uses an even safer value of 2 KB; however,
with the image generation technique described in the previous
section, a user will have the ability to increase this block size.
Note that with this feature, we can use at most 10% of the
total storage capacity provided by the media sharing service.
While we realize that this may be seen as a large waste of
space, Flickr and other service providers have accounts with
relatively unlimited bandwidth and storage for a small service
fee. Thus, this is not a problem for the determined user.

3) Locating and Reading Files:With the allocation table,
PicFS can look up a path for a desired file. This path gives
PicFS both the inode number and the image name of the image
encoded with the inode of that file. Once PicFS has decoded
that image, it proceeds to look up the individual data blocksfor
the file by using the information in the inode and the allocation
table. Figure 2 shows the different method that PicFS uses

versus CovertFS’s method. The data for this example is taken
from the allocation table in Figure 1. As you can see, for even
a simple lookup of a file in the root directory, PicFS requires
40% less accesses than CovertFS.

Fig. 2. How to access a file in PicFS vs. CovertFS using the allocation
table from Figure 1. Both filesystems are performing a lookupon file1.txt.
The arrows indicate the starting point of the lookup processfor PicFS and
CovertFS, respectively.

However, one question remains - how does PicFS get the
allocation table? We cannot treat it as a regular file because
we cannot yet reference an allocation table to do so. This is
a classic chicken and egg problem. To avoid this issue, we
add an additional attribute to the inode of the allocation table
that references a chain of images that contains the consecutive
data blocks for the allocation table. Each data block in turn
also has an attribute that contains the image name of the next
image for the chain.

4) Mounting the Filesystem:In order to mount PicFS, a
user must have a valid account with the media sharing service.
In addition, the filesystem owner must also know the image
name of the allocation table’s inode. Sharing users must also
know this image name - it is a shared secret that can be
transferred from filesystem owner to authorized shares in the
same manner as a password might be. To finish mounting,
a user must download the image file associated with the
allocation table, the full allocation table contents, and finally
the root directory of the filesystem.

5) Filesystem Writes and the On-Disk Cache:To keep
file accesses from looking too suspicious, PicFS must use
log-structured writes. We know of no application or user
that routinely modifies images and re-uploads them. It is not
intuitive for an individual to do so with the amount of storage
available - even when users modify images after upload, it is
usually easier to upload the modification as a new image.



Instead, when a file is modified and closed, new images
are produced for the data blocks that have been changed and
the inode block. The inode block requires an update because
on modification at least the modification time must change.
The allocation table is then modified to reflect these changes.
PicFS keeps track of modifications to the allocation table by
chaining the images. In other words, the original allocation
table takes advantage of the a priori knowledge of possible
image names and reserves another one at creation for the
location of the next allocation table inode block. If this file
exists on the media sharing service, then a new allocation table
is available. This chain is only necessary for the allocation
table. If the filesystem were to support writes from other
individuals besides the owner it would be necessary to chainall
files. Instead, users are reading the filesystem are guaranteed a
filesystem that is as up-to-date as when they mounted it. This
avoids issues of cache coherency and consistency that can be
solved with a complex locking protocol. Note that PicFS only
needs to find the most up-to-date version of the allocation
table when the filesystem is mounted. Therefore, the expensive
operation of following a chain image by image only has to be
performed once.

In order to further facilitate this filesystem, we add an
Image-based On-disk Cache. This optimization is essential
in reducing traffic without giving up plausible deniability.
Basically, the on-disk cache mimics the behavior of the media
sharing service by handling all reads and writes for the
owner until dismount. The on-disk cache can be implemented
as a directory on the local filesystem which contains the
steganographically encoded images produced by PicFS and our
prototype takes this approach. A compromise of this directory
does not affect the privacy of PicFS, because an intruder would
at most have an out-of-date image directory from the user’s
media sharing service, but no unencoded files. Many tools
on Flickr behave in this way (see Evaluation) and thus this
optimization does not reduce plausible deniability. This also
reduces the number of images that need to be uploaded to the
media sharing service and can markedly improve performance.
It is also possible to flush the cache at a specific interval to
balance the performance and the freshness of online data.

6) Dismounting the Filesystem:At dismount, PicFS writes
the allocation table to the on-disk cache by dividing the table
into blocks and steganographically encoding the blocks into
images. The changes are then flushed from the on-disk cache
to the online media service. These changes can be detected
by checking against the manifest of the media sharing service
before uploading. As a final step, the on-disk cache is erased.

III. I MPLEMENTATION

A. The Filesystem

Our implementation of the PicFS filesystem is an installable
filesystem for Linux. We used FUSE to allow us to build
PicFS as a user-level filesystem to simplify the amount of
work involved [6]. FUSE is composed of a kernel-driver
that communicates with a user-level library that an installable
filesystem can interact with. Specifically, we used FUSE-J, a

Java wrapper around FUSE that uses the Java Native Interface
(JNI) to make calls between the FUSE user-level library and
PicFS [7]. Java was our language of choice because serializa-
tion of data structures into bytes is much easier in Java thanin
C. As a communication layer we configured Tor to anonymize
our traffic. For steganography, we used F5, a popular high-
capacity steganographic method that hides information in the
least significant bit of image pixels [8]. However, note that
the method of steganography used is modular and tied to
PicFS. There is a definite tradeoff between the robustness of
the steganographic method and its performance and F5 is a
good compromise. In addition, F5 also allows users to encrypt
data with a special password before encoding to protect the
confidentiality of the data even if steganalysis decodes the
image.

The design of the filesystem left a few choices. The most
important of these choices was to either bulk download all the
image files that are used with a given allocation table at mount
time, or download images on-demand. We chose to implement
both of these methods.

While the filesystem is a complete prototype that handles
all commands passed by FUSE, there are a few items from the
design left unimplemented. First, we have not yet implemented
chaining of the allocation table. Second, we have only imple-
mented direct blocks in inodes. This allows the maximum file
size to be only twelve times the block size (which in our case
is 24KB). Finally, we implemented file opens to decode all
data in a file before passing back an open handle. This step is
unnecessary and in terms of performance, inefficient.

B. The Media Sharing Service

We began to implement PicFS using Flickr as the media
sharing service. Flickr was an ideal choice because of its
strong presence on the web and its open API [2]. We used
Quickr-Flickr to access the Flickr API from Java [9]. However,
halfway through the integration with Flickr we found two key
problems. First, it would be difficult to evaluate the anonymity
and access patterns given that the filesystem was accessing
Flickr through Tor. Second, Flickr’s free accounts do not allow
other users to download original images from the API.

Although we considered working around the system with
HTTP requests to mimic a web user, we anticipated much
lower performance from this approach. Instead, we imple-
mented our own media server on the web which supports up-
load, download, search and delete commands. All evaluations
were done on our media server to model the service provider’s
knowledge of incoming traffic and account information. The
media server is for evaluation purposes only and we modular-
ized PicFS so that it would be relatively easy to use a different
media server in the future.

Figure 3 show our implementation of PicFS and how the
individual components interact.

C. Traffic Anonymization with Tor

In a public image store, a normal access pattern is for
users to upload images or share with their families, friends,



Fig. 3. Block diagram of the different subsystems of PicFS interacting. The
thin arrows refer to module communication in the system while the thicker
arrows refer to external communication such as network communication or
through the I/O subsystem of the operating system.

or anyone with an internet connection around the world. Once
uploaded, many images are mostly viewed by others, rather
than the owners. However, a PicFS client frequently needs
to retrieve a set of his/her own images from the web site
in order to read the hidden contents. To avoid this abnormal
access pattern, we utilize Tor network [10] [11], in particular
its encrypted and periodically updated data channels, where
the participating routers in each hop have no knowledge of
data source or destination beyond the current hop. The main
benefit that Tor brings to PicFS is that it helps to blend PicFS
accesses into the main stream of image browsing traffic. As a
result, when a PicFS client reads a file, the traffic to Flickr will
no longer stands out as the owner suspiciously views his/her
own pictures over and over again. On the contrary, it will
look like just another user on the internet becomes interested
in these images and starts to view them.

Fig. 4. Example of image retrieval with the Tor network.

Figure 4 shows how a PicFS client retrieves images via

a Tor network. In this simple example, a PicFS client first
creates Circuit 1 on three onion routers A, B, and C. In this
case, Flickr sees that a user from router C sends requests to a
number of images. It is not aware of the fact that the access is
originated by the PicFS client. Nor does Router C. Also, router
A knows the source of the request but not the destination, and
outer B knows neither the source nor the destination. The client
uses this circuit for ten minutes. Then a new circuit, Circuit 2,
is created. This way, the accesses originated from one PicFS
client are disguised as ”normal” photo sharing activities of two
independent users.

IV. EVALUATION

The evaluation of PicFS is decomposed into two. The first
component of the evaluation evaluates the effectiveness ofthe
image generation technique. The second component evaluates
the filesystem itself. The filesystem is evaluated on its support
for plausible deniability and practicality.

A. Image Generation from Video

Evaluating the effectiveness of the image selection algo-
rithm for our purposes is somewhat difficult. Although it is
relatively simple to test if actual shot changes in a video
sequence are detected, there are probably images besides shot
changes in the video sequence that are different enough to be
included in our image set. One study of Flickr users described
a new class of photo-takers, who uploaded images more than
twice per week, took many ”interesting” and ”artsy” pictures,
and were unconcerned with photo privacy [12]. As a result,
we restricted our evaluation to a qualitative analysis of the
images selected from distinct video sequences, in the context
of the distribution of differences.

We used three datasets from different genres to evaluate the
image selection: a short home video of a cat playing with a
tortoise, part of an animation episode, and part of a popular
television show. Each video sequence had different features
which made some of the metrics more suitable than others. The
animation sequence had frequent small movements and many
shot changes, but clearly defined edges. The home video had
many lighting changes, jerky camera movement, and relatively
low quality frames. Finally, the television sequence had more
regular shot patterns, but had dramatic lighting changes and
longer periods of small movements, like talking. Interestingly,
our method yielded a greater number of very different images
for the home video sequence, making it ideal for the purpose
of using home videos to generate images for the filesystem.

Figure 5 illustrates the difference distributions calculated
from the three metrics used for our first dataset, a home
video of a cat playing with a tortoise. The distribution for
each metric is very different, which is expected since each
metric was chosen for its sensitivity to distinct video features.
In addition, the scale of differences detected varies greatly
between metrics, emphasizing the importance of an adaptive
thresholding approach. Figure 6 shows the frame differences
for each difference metric plotted against the frame numberin
the sequence.



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
D

iff
er

en
ce

L1 Distance

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Edge Difference

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Histogram Comparison

Fig. 5. Difference distributions, home video.

0 0.1 0.2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

L1 Distance

F
ra

m
e 

(T
im

e)

 

 

0 0.1 0.2

Histogram Difference

 

 

0 0.1 0.2

Edge Difference

Fig. 6. Difference metrics and randomized distribution, home video.

Finally, Figure 7 shows a plot of the frames that our
algorithm automatically selected from the weighted difference
distribution. As expected from the adaptive thresholding ap-
proach, the frames selected all lie at the peaks of the weighted
difference distribution. We have manually annotated the graph
with descriptions of the action in the video at key points in
the distribution. See Appendix A for the actual selected images
corresponding to the figure annotations.

For brevity, we omit the plots from our other datasets. Al-
though the distributions for the other datasets are similar, there
are significantly more false positives (overly similar frames)
selected in the television and animated sequence datasets.The
algorithm seems particularly prone to false positives resulting
from professional camera effects (subtle fades, cross dissolves,
camera spinning around the scene), and long scenes with small
amounts of motion, like talking sequences. We believe this is
because the difference metrics do not provide a good enough

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

Frame (Time)

D
iff

er
en

ce

 

 
Total difference
Selected

fade

fade

camera
follows

cat rolls over
cat pounces

shot change

shot change

Fig. 7. Annotated plot of automatically selected frames, home video.

estimate of the similarity between frames for this type of data.
The problem of computing perceived similarity between two
input images remains an open problem in computer graphics.
In the future, we hope to apply the latest research in video
shot detection to help alleviate these issues. Fortunately, most
home videos will not make use of such professional effects.

Dataset Length Frames Selected Percentage
Home Video 2:15 1950 96 4.9
Television 3:17 14932 258 5.2
Animated 15:00 14298 885 6.2

TABLE I
IMAGE GENERATION RESULTS.

Table I shows the number of images selected from each
video sequence and the percentage yield. Although the per-
centage may seem relatively low, the focus of the approach is
to select images unlikely to arouse suspicion from an outside
observer. Thus, the percentage of frames selected from the
video should be very low unless the video itself features
choppy editing and covers many different kinds of scenes.

B. The Filesystem

We have evaluated the implementation of the PicFS such
that the on-disk cache downloads all images that are on the
filesystem on mount. The only other interaction between the
media server and the filesystem is the bulk upload of images
that are in the allocation table when dismounting and that were
not downloaded on mount. This ensures that PicFS minimizes
the number of photos it must upload and download.

1) Plausible Deniability:To show that the types of access
of this filesystem are consistent with plausible deniability, we
must show that the file access patterns are consistent with a
few API tools of a media sharing service. We use Flickr as the
media sharing service to evaluate against since it is a popular
photo-sharing service and has many popular tools that take
advantage of its API [2].

Among the various applications that use the API there are at
least two applications that exhibit similar behavior to thePicFS
prototype. These two are FlickrFS [13] and Gnicker [14].
These applications both exhibit bulk download on startup



(request most images on Flickr) and bulk upload on exit
(synchronize on exit).

These are exactly the semantics of PicFS. When PicFS is
mounted, the on-disk cache fetches many images in bulk when
it reads in the allocation map and all files in the allocation map.
Once the filesystem is mounted, there is no interaction between
the filesystem and the media-sharing service until dismount.
On dismount a large number of files are uploaded. The files
that are uploaded are different from the ones downloaded. This
can be seen as a synching operation. As a result, PicFS can
mimic other applications and preserves plausible deniability.

2) Practicality: Our target system for the evaluation of our
prototype system is on a virtualized Ubuntu operating system
running on VMWare Server. The hardware of the system is an
Intel Core Duo running at 2.4 GHz with 2GB of RAM. The
block size for our filesystem was kept at 2KB. Finally, since
indirect blocks have not yet been implemented in PicFS, the
file sizes are limited to 24 KB (with twelve) direct blocks.

At this time, our filesystem decodes all the blocks of a
file on open. This, unfortunately, precluded the use of many
popular benchmarking software since they do not take into
account the amount of time it takes to open a file. This is a
good point for future work since there is a definite trade-off
between decoding blocks all at once or on-demand decoding.
Depending on the usage of a file, one may be much better
than the other. Figure 8 shown below shows the performance
taking into account both opens and closes for reads and writes.

Fig. 8. Performance of reads and writes on a file of differing sizes. These
reads and writes involve reading and writing to the entiretyof the file.

It is important to note that this performance has been
measured in KB/sec. As a reference, the host filesystem (Ext3)
measured using IOzone [15], a popular benchmarking suite,
measured writes on the order of 100 MB/sec and reads on the
order of 1 GB/sec! Clearly, there is a large price to privacy and
the practicality of the prototype for normal use filesystem is
insufficient. However, as the filesystem being used with filesof
small sizes (order of KB or small order of MB), is sufficient.
There are also remain many possibilities in optimizing the
performance by using better caching and encoding/decoding
mechanisms. At present time, the largest overhead is in the
steganographic method.

V. RELATED WORK

There is a rich body of work concerning steganographic
techniques for media, although many methods use steganogra-
phy for watermarking, rather than information hiding. A useful
class of techniques is Quantization Index Modulation (QIM),
which maps content values to a set of possible encoded values,
which are then embedded invisibly into an image [16]. QIM,
originally a watermarking technique, is more robust to image
modification than many other algorithms and can be made less
detectable with statistical restoration, a process which attempts
to restore the statistical properties of the cover image [17].
Due to the higher amount of information that can be encoded
in each image, PicFS uses the F5 algorithm that encodes
information in the lowest significant bit of image pixels [8].

User anonymization to dissociate IP addresses from web
traffic has been well studied in the context of privacy. The de-
velopers of FreeNet employ a distributed filesystem built over
anonymous networks. However, this approach does not address
full privacy as it requires some trust of all other users of
the system [18]. Goldschlag et al. presented the onion router,
which allows users to achieve anonymous communication on
the Internet by hiding among a group of other users [19].
This approach was used in APFS (Anonymous Peer-to-peer
File Sharing), which aims to preserve privacy of file sharers
in a P2P network [20]. PicFS uses Tor, an implementation
of second generation onion routing [10] [11]. Tor utilizes an
overlay network of onion routers to create random circuits
from source to destination, replacing traditional direct routes.
Anonymity is then achieved through disguising the identities
of both the sender and receiver.

Finally, although the subject of finding plausible images
for steganography has not been directly studied, numerous
techniques exist in computer graphics for constructing novel
images from some initial seed set. Methods range from tra-
ditional morphing techniques to advanced image-based ren-
dering, which uses a base set of images to interpolate or
extrapolate realistic novel views from the proper combina-
tions of the input images [21] [22]. However, these methods
are insufficient for automatically generating images as they
require too much knowledge of relationships between a large
set of seed pictures to use effectively. Instead, we rely on
a large body of work on detecting distinct shots in video
sequences [23] [24].

VI. CONCLUSION

In this paper we present PicFS, a filesystem that provides
self-enforcing privacy while using an untrusted media sharing
services for storage. PicFS represents a realizable designand
implementation as well as a sound way to generate thousands
of plausible, unique images from home video sequences. With
this filesystem, users will be able to share their information
with chosen individuals using the vast resources of media
sharing services - without sacrificing privacy to the services.

Although we discuss some optimizations, performance is
not a focus. This stems mostly from the fact that we are
building a filesystem to provide plausible deniability before



everything else. We provide an Image-Based On-Disk cache
to improve performance, but there are many other possible
enhancements. The most promising is an in-memory cache,
although it could negatively impact plausible deniability. Other
possible enhancements include pre-fetching and pre-decoding.

PicFS is a network filesystem implementation of a filesys-
tem that supports plausible deniability. However, it would
be more versatile as a distributed filesystem incorporating
technologies like CFS [25], Chord [26], or Symphony [27].
By moving to a distributed model, PicFS could potentially
provide better protections against suspicious hot spots aswell
as improve performance with a distributed cache infrastructure.

Images are a useful steganography medium, but it is possible
that methods for video steganography might offer greater
capacity for encoding information. Video sharing sites to-
day are prominent and the great variety of videos currently
uploaded to sites such as YouTube could provide excellent
opportunities for hiding data, although the upload formatsare
typically restrictive. We would also like to explore techniques
to make our image selection algorithm sensitive to qualities
of images that make them more robust against steganalysis.
Some possible directions for this approach include preferring
images with high amounts of texture and certain kinds of noise,
or even filtering images slightly to improve statistics.

VII. A CKNOWLEDGMENTS

The authors thank Dave Evans and Duane Merrill for their
help in contributing ideas, and anonymous reviewers for the
comments that helped improving this paper.

REFERENCES

[1] A. Baliga, J. Kilian, and L. Iftode, “A web based covert file system,” in
Proceedings of the 11th Workshop on Hot Topics in Operating Systems
(HotOS-XI), May 2007.

[2] “Flickr api.” [Online]. Available: http://www.flickr.com/services/api/
[3] A. D. McDonald and M. G. Kuhn, “Stegfs: A steganographic file system

for linux,” in IH ’99: Proceedings of the Third International Workshop
on Information Hiding. London, UK: Springer-Verlag, 2000, pp. 462–
477.

[4] K. Engel, Real-time volume graphics. AK Peters Ltd, 2006.
[5] P. Bhagwat, D. Gupta, and R. Moona, “Design and implementation of a

file system with on-the-fly data compression for GNU/linux,”Software
- Practice and Experience, vol. 29, no. 10, pp. 863–874, 1999.

[6] M. Szeredi, “Fuse: filesystem in user-space for linux,” 2005. [Online].
Available: http://fuse.sourceforge.net/

[7] “Fuse-j java bindings for fuse (filesystem in userspace).” [Online].
Available: http://sourceforge.net/projects/fuse-j

[8] A. Westfeld, “F5-a steganographic algorithm,” inIHW ’01: Proceedings
of the 4th International Workshop on Information Hiding. London,
UK: Springer-Verlag, 2001, pp. 289–302.

[9] “Quickr flickr: java access to the flickr api.” [Online]. Available:
https://quickr-flickr.dev.java.net/

[10] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: Thesecond-
generation onion router,” inProceedings of the 13th USENIX Security
Symposium, August 2004.

[11] “Tor project.” [Online]. Available: http://www.torproject.org
[12] A. D. Miller and W. K. Edwards, “Give and take: a study of consumer

photo-sharing culture and practice,” inCHI ’07: Proceedings of the
SIGCHI conference on Human factors in computing systems. New
York, NY, USA: ACM, 2007, pp. 347–356.

[13] “Flickrfs.” [Online]. Available: http://sourceforge.net/projects/flickrfs
[14] “Gnicker.” [Online]. Available: http://gnicker.sourceforge.net
[15] W. Norcutt, “The iozone filesystem benchmark.” [Online]. Available:

http://www.iozone.org/

[16] B. Chen and G. W. Wornell, “Quantization index modulation methods
for digital watermarking and information embedding of multimedia,” J.
VLSI Signal Process. Syst., vol. 27, no. 1-2, pp. 7–33, 2001.

[17] K. Solanki, K. Sullivan, U. Madhow, B. Manjunath, and S.Chan-
drasekaran, “Provably secure steganography: Achieving zero k-l di-
vergence using statistical restoration,”Image Processing, 2006 IEEE
International Conference on, pp. 125–128, 8-11 Oct. 2006.

[18] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: a distributed
anonymous information storage and retrieval system,” inInternational
workshop on Designing privacy enhancing technologies. New York,
NY, USA: Springer-Verlag New York, Inc., 2001, pp. 46–66.

[19] D. Goldschlag, M. Reed, and P. Syverson, “Onion routingfor anony-
mous and private internet connections,”Communications of the ACM,
vol. 42, no. 2, pp. 39–41, 1999.

[20] C. Shields, “Responder anonymity and anonymous peer-to-peer file shar-
ing,” in ICNP ’01: Proceedings of the Ninth International Conference on
Network Protocols. Washington, DC, USA: IEEE Computer Society,
2001, p. 272.

[21] S. M. Seitz and C. R. Dyer, “View morphing,” inSIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM, 1996, pp. 21–30.

[22] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen, “Unstruc-
tured lumigraph rendering,” inSIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM, 2001, pp. 425–432.

[23] M. K. Mandal, F. M. Idris, and S. Panchanathan, “A critical evaluation of
image and video indexing techniques in the compressed domain.” Image
Vision Comput., vol. 17, no. 7, pp. 513–529, 1999. [Online]. Available:
http://dblp.uni-trier.de/db/journals/ivc/ivc17.html#MandalIP99

[24] S. L. M.-C. Lee, “Effective detection of various wipe transitions,”
Circuits and Systems for Video Technology, IEEE Transactions on,
vol. 17, no. 6, pp. 663–673, June 2007.

[25] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with cfs,”SIGOPS Oper. Syst. Rev., vol. 35,
no. 5, pp. 202–215, 2001.

[26] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM ’01: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM, 2001, pp. 149–160.

[27] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: distributed hash-
ing in a small world,” inUSITS’03: Proceedings of the 4th conference on
USENIX Symposium on Internet Technologies and Systems. Berkeley,
CA, USA: USENIX Association, 2003, pp. 10–10.

APPENDIX A
A CASE STUDY: IMAGES TAKEN FROM A HOME VIDEO

(a) Frame 245: shot change from
cat to turtle

(b) Frame 493: camera follows
cat

(c) Frame 523: camera moves to
follow action

(d) Frame 858: cat rolls over


