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Abstract—Cloud computing makes available a vast amount of and data blocks are steganographically encoded into images
computation and storage resources in thgay-as-you-go manner. and anonymously uploaded and downloaded from a media-
However, the users of cloud storage have to trust the provide sharing host. Because all accesses are anonymized, users of

to ensure the data privacy and confidentiality. In this paper we . . . . .
present the Privacy-enhancing Image-based CollaborativeFile PicFS are dissociated from their data, which protects users

System (PicFS), a network file system that steganographidgl agdainst being compelled to release their keys. This is of
encodes itself into images and provides anonymous uploadsspecial importance to allow users to share files and infaonat
and downloads from a media sharing website. PicFS provides without fear of censorship and retribution.
plausible deniability by preventing traffic and image analysis  \yg develop these ideas by bringing plausible deniability to
by any third party from revealing the existence of PicFS or ; g .
compromising its data. Because all accesses are anonymized®VE"Y step of an 0n||ne.steganograp_hlc fllesystem. Speltyﬂca
users of PicFS are dissociated from their data, which protas ~PICFS targets four key issues. First, in order to mimic "nafm
users against being compelled to release their keys. For fther access patterns to Flickr, we study a list of popular Fligkr a
security and ease of use, we develop a method for automatibal plications for comparison with PicFS’s access behavioguas
generating a large set of non-suspicious images to serve @it gystam can use an open API to communicate with Flickr [2].
o the system. Our prototype leverages a number of existing Second, in addition to normalizing access patterns to F ek
technologies, including the F5 algorithm for steganograpy, ! . . ’ '
Quick-Flickr for Flickr APl access, Tor for anonymization, and further enhance PicFS with anonymized accesses. We leverag
FUSE-J for user-level filesystem calls. We show that the Pi& Tor's onion routing technology to provide an additionalday
is indeed practical as the prototype demonstrates satisfary  of security for the user without sacrificing plausible désiligy.
performance in the real-world environment. Third, we address the logistics of finding a large number of
believable images to use as input to the filesystem. Thigissu
is crucial for plausible deniability and secure steganplya
Today online file storage (e.g., Google Docs and Flickthe system must not use a set of images that is very unlikely to
allows easy backup, sharing, and collaboration on photws, dappear on a Flickr account, and it cannot use images awilabl
uments, spreadsheets, presentations, etc. However,dreafs elsewhere without the risk of image comparison revealirg th
online services for storing files currently have an all-othing use of steganography. Since the filesystem is also log-based
security choice: they can either compromise all of theimdagven small filesystems require a large pool of suitable image
and its structure by using the service, or compromise ngthias a new image is needed for every change. PicFS attacks this
by opting out completely. Although encryption can protée t problem by automatically selecting "interesting” framesn
contents of data in this situation, it cannot hide the eriste user-provided home videos to provide a never-ending smfrce
of hidden content - an equally important issue. For exampleglievable images available only to the user. Finally, heea
a host uninterested in user privacy could ban encrypted filesline storage tends to cause undesirably long latencies, w
above a certain size, or altogether. A host could choose drplore the tradeoffs of an on-disk cache to mitigate networ
reveal encrypted data to a third party with the resources delays and overhead from steganography.
break the encryption. Finally, an attacker with unauthetiz  The idea of a steganographic filesystem is not new, although
access to the host could access the data. For these reademsprototypes exist. For example, StegFsS is a steganoigraph
users of online storage need self-enforcing privacy - sgcurfilesystem [3] which uses the free memory blocks in a local
for their files that protects not only the content and strieetufilesystem to store information, but it has persistency |enois
of data, but also its very existence. as free memory blocks can be re-allocated at any time.
In this paper, we present the Privacy-enhancing Image addition, this filesystem does not have the means to be
based Collaborative File System (PicFS), a network filesgst shared covertly. Our system PicFS is most closely related to
that allows writes only by its owner and allows sharing t€overtFS, a Web-Based Covert File System [1]. However,
other designated individuals. PicFS achieves strong enlithere is yet to be a prototype or evaluation of CovertFS
privacy through hiding the existence of hidden data, that iand so it is unclear whether such a system can achieve the
plausible deniabilityintroduced in [1]. In PicFS, both inodesoriginal goal of strong privacy. In PicFS, we design and
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implement a number of key components that are not onB; The Filesystem

missing from CovertFS but crucial to the success of Pic:FS,our design is based on the Second Extended Filesystem
e.g., automated image generation, anonymized accesssatt Ext2) [5]. We chose Ext2 over Ext3 and Ext4 since many

and f!lesys_ter_n optlmlzathns. In this paper, we show th ther filesystems including Ext3 are based on the structiure o
the PIicFS is indeed practical as the prototype demonstrags, since we are mostly concerned with the structure and
satisfactory performance results in the real-world emment. . oqqitional services such as the Log introduced in Ext3
The rest of this paper is organized as follows. Section BExt? is a good choice. '
explains the design of PicFS and describes algorithms usedye yefine the following Attacker-Centric Threat Model. The
with video sequences in order to realize PicFS. Section 8 90, \er we are concerned with is the one who has access to
over the implementation of PicFS and the image generatioénl. images on the media-sharing service and also can snoop

Section 4 presents an evaluation of the implementations(ﬂ{ the network and detect what and to whom a client sends

P'CFS. and the image ge_neratlon. S_ect|on S pfes‘?”ts thedtel message. We address this attacker in our evaluation isectio
work in the design of PicFS. Section 6 summarizes the w

. . . e assume that the attacker does not have access to a client’s
and discusses future research directions. .
machine.
Il. DESIGN In order to support our goal of plausible deniability and

. . . - address our threat model we must provide:

The design of PicFS can be broken into two distinct parts: - _ :

image generation and filesystem design. 1) An efficient mapping between filesystem blocks and
images;

A. Image Generation From Video 2) File access traffic that does not draw more attention than

It is important for plausible deniability that the input iges other applications using the API of a media sharing site.
to PicFS be unique and not arouse suspicion. One approach téhe first point is intrinsic to filesystems - it must be
this problem is to ask the user to provide a group of pictur@sountable and provide a way to find files. The second point,
- however, the log-based filesystem requires a very largermalizing access patterns, supports plausible deitiahiid
image set. To solve this problem, PicFS uses user-providagddresses our threat model. The following sections show our
home videos to generate the large number of images it neélésign and how it addresses these issues.
for steganography. Since many modern digital cameras havel) The Superblock and the Allocation Tabler Ext2, the
video capture features, original footage is a perfect amgme first portion of memory on disk is known as the superblock.
ending source of plausible, unique images. Home videos feafom the superblock, a filesystem knows where to find free
all quality levels and subjects are very common. In addjtioblocks, how to find inodes that correspond to the head of a
each sequence of video is unique to the user and cannotfileand how to find data blocks. However, for PicFS most of
found elsewhere for comparison against the encoded versitirese are unnecessary. First, since PickFS draws free memory

Since we want to extract a large number of plausiblgocks from generated images, PicFS cannot track free block
images from a variety of videos, we mix and match frornstead, PicFS generates images as needed from a pool. PicFS
previous video shot detection algorithms to create the mdstther combines the other functions of the superblock ario
general, domain-independent method that suits our purposiocation table - a data structure that links inode numbers
For each input video, the difference values using threeudifit paths within the mounted filesystem and their corresponding
metrics are computed between consecutive frames. We isage names. The allocation table also links the data block
the L1 distance, the Chi-squared difference in the intgnsibumbers to image names. Thus, given an inode number, we
histograms, and the number of edges detected with the Sotmh find which path it refers to on a mounted filesystem
edge filter [4] as our metrics. Each measure is sensitivertiesoand the image that corresponds to the inode block on the
type of noise present in many videos, so the other metricgdia sharing service. We can also find the image names of
are chosen to compensate for this effect. For example, the corresponding data blocks. Figure 1 is an example of an
L1 distance is very sensitive to motion while the histogram@llocation table. Note that keeping the filesystem pathkiwit
difference is not, and the histogram difference is seresitiv the table improves performance as it avoids having to search
lighting changes, while the L1 distance and the edge detectodirectory hierarchy to locate the image file for an inode.
are more robust to this type of noise. To scale up the design to a large number of files, we shall

To process a home video, we first compute the differencewestigate new techniques (e.g., hash, embedded DB) &s par
between consecutive frames for each metric. Once thexdefuture work to improve the search performance.
difference vectors are computed, we average the results an&) Mapping Blocks to ImagesTo structure inodes, we
select interesting frames from the resulting distributiming use the Ext2 design, which includes meta-information such
an adaptive threshold. Based on the difference statigtias ias the file size, ownership, and data block locations. All
window of surrounding frames, the threshold varies acrofesystem information including that of the allocation &b
each video sequence and each video, requiring no manisastored within the media sharing service. We have a one-
parameter setting. The size of the window affects the numherone mapping between blocks in the filesystem and images
of frames selected from the video. stored on the media sharing service.



versus CovertFS’s method. The data for this example is taken
Allocation Table from the allocation table in Figure 1. As you can see, for even
a simple lookup of a file in the root directory, PicFS requires
| 40% less accesses than CovertFS.
Inode mage
number P'CFS/ Path Name Pic010.jpg Pic007..jpg
1 : Pic010.jpg Dir / Data Block (1)
2 ;glr; Pic005.jrg root inode (0) Content:
3 /ar Pic003.jpg DL[O] = 1 »| Inode 4 name file.txt
ffile1.txt : : .
4 Idir1ffile2 Pic006.jpg
5 dir1/ffile 2.txt Pic021.jpg
v
File: ffile.txt R
Data Data oo S
Block Image DL[] =3 2
Number Name _ 3
1 Pic007.jpg
2 Pic008.jpg
3 P!COZO.j:pg \ J 4
4 Pic124.jog Data Block (3) Data Block (2)
5 Pic023.jpg Content 1S COOL Content PICFS
6 Pic127.jpg
7 Pic643.jpg
8 Pic693.jpg
9 Pic234.jpg Pic008.jpg Pic020.jpg
10 Pic232.jpg
11 Pic999.jpg Fig. 2. How to access a file in PicFS vs. CovertFS using thecatiion
12 Pic245.jpg table from Figure 1. Both filesystems are performing a lookapfilel.txt.
The arrows indicate the starting point of the lookup prodessPicFS and
CovertFS, respectively.
However, one question remains - how does PicFS get the

allocation table? We cannot treat it as a regular file because
we cannot yet reference an allocation table to do so. This is
a classic chicken and egg problem. To avoid this issue, we
: . . . _ add an additional attribute to the inode of the allocatidri¢a

Typical photo sizes on media sharing Services range frptﬂ.'at references a chain of images that contains the comgecut
40KB to 300KB and current s.teganographlc aII_oyv embedd|%ta blocks for the allocation table. Each data block in turn
O.f about 10% of data .[1]' Th!s ?"OWS for a minimum bloc Iso has an attribute that contains the image name of the next
size of up to 4 KB. Since this filesystem is based on Ext age for the chain.
it relies on a single fixed value for the block size. Our 4) Mounting the Filesystemin order to mount PicFS, a
implementation uses an even safer value of 2 KB; howevgger myst have a valid account with the media sharing service
with the image generation technique described in the ppsvio, aqgition, the filesystem owner must also know the image
section, a user will have the ability to increase this bloeks ame of the allocation table’s inode. Sharing users must als
Note that with this feature, we can use at most 10% of ”Pé?]ow this image name - it is a shared secret that can be
total storage capacity provided by the media sharing servigansferred from filesystem owner to authorized sharesen th
While we realize that this may be seen as a large waste Qfse manner as a password might be. To finish mounting,
space, Flickr and other service providers have accounts Wi ;ser must download the image file associated with the
relatively unlimited bandwidth and storage for a small &8V 5 15cation table, the full allocation table contents, anthlfy
fee. Thus, this is not a problem for the determined user.  ho root directory of the filesystem.

3) Locating and Reading Fileswith the allocation table, 5) Filesystem Writes and the On-Disk Cach&o keep
PicFS can look up a path for a desired file. This path givéife accesses from looking too suspicious, PicFS must use
PicFS both the inode number and the image name of the imdgg-structured writes. We know of no application or user
encoded with the inode of that file. Once PicFS has decodidt routinely modifies images and re-uploads them. It is not
that image, it proceeds to look up the individual data bldoks intuitive for an individual to do so with the amount of stoeag
the file by using the information in the inode and the allamati available - even when users modify images after upload, it is
table. Figure 2 shows the different method that PicFS usesually easier to upload the modification as a new image.

Fig. 1. An allocation table populated with inode and datarimfation.



Instead, when a file is modified and closed, new imagdava wrapper around FUSE that uses the Java Native Interface
are produced for the data blocks that have been changed &idl) to make calls between the FUSE user-level library and
the inode block. The inode block requires an update becau&eFS [7]. Java was our language of choice because serializa
on modification at least the modification time must changton of data structures into bytes is much easier in Javaithan
The allocation table is then modified to reflect these chang€s As a communication layer we configured Tor to anonymize
PicFS keeps track of modifications to the allocation table lmur traffic. For steganography, we used F5, a popular high-
chaining the images. In other words, the original allogatiocapacity steganographic method that hides informatiomén t
table takes advantage of the a priori knowledge of possibémast significant bit of image pixels [8]. However, note that
image names and reserves another one at creation for tte method of steganography used is modular and tied to
location of the next allocation table inode block. If thisefil PicFS. There is a definite tradeoff between the robustness of
exists on the media sharing service, then a new allocatlda tathe steganographic method and its performance and F5 is a
is available. This chain is only necessary for the allogatiqgood compromise. In addition, F5 also allows users to encryp
table. If the filesystem were to support writes from othetata with a special password before encoding to protect the
individuals besides the owner it would be necessary to dhin confidentiality of the data even if steganalysis decodes the
files. Instead, users are reading the filesystem are guarhateimage.
filesystem that is as up-to-date as when they mounted it. ThisThe design of the filesystem left a few choices. The most
avoids issues of cache coherency and consistency that cariniygortant of these choices was to either bulk download all th
solved with a complex locking protocol. Note that PicFS onlynage files that are used with a given allocation table at rhoun
needs to find the most up-to-date version of the allocatidime, or download images on-demand. We chose to implement
table when the filesystem is mounted. Therefore, the expendboth of these methods.
operation of following a chain image by image only has to be While the filesystem is a complete prototype that handles
performed once. all commands passed by FUSE, there are a few items from the

In order to further facilitate this filesystem, we add adesign left unimplemented. First, we have not yet implement
Image-based On-disk Cach@&his optimization is essential chaining of the allocation table. Second, we have only imple
in reducing traffic without giving up plausible deniability mented direct blocks in inodes. This allows the maximum file
Basically, the on-disk cache mimics the behavior of the mediize to be only twelve times the block size (which in our case
sharing service by handling all reads and writes for ths 24KB). Finally, we implemented file opens to decode all
owner until dismount. The on-disk cache can be implementddta in a file before passing back an open handle. This step is
as a directory on the local filesystem which contains thennecessary and in terms of performance, inefficient.
steganographically encoded images produced by PicFS and ou ] _ _
prototype takes this approach. A compromise of this dimgctoB: The Media Sharing Service
does not affect the privacy of PicFS, because an intrudetdvou We began to implement PicFS using Flickr as the media
at most have an out-of-date image directory from the usesbaring service. Flickr was an ideal choice because of its
media sharing service, but no unencoded files. Many to@gong presence on the web and its open API [2]. We used
on Flickr behave in this way (see Evaluation) and thus th@uickr-Flickr to access the Flickr API from Java [9]. Howeve
optimization does not reduce plausible deniability. THsoa halfway through the integration with Flickr we found two key
reduces the number of images that need to be uploaded to gheblems. First, it would be difficult to evaluate the anoiitym
media sharing service and can markedly improve performanaed access patterns given that the filesystem was accessing
It is also possible to flush the cache at a specific interval Eickr through Tor. Second, Flickr’s free accounts do néial
balance the performance and the freshness of online data.other users to download original images from the API.

6) Dismounting the FilesystemAt dismount, PicFS writes  Although we considered working around the system with
the allocation table to the on-disk cache by dividing thdeabHTTP requests to mimic a web user, we anticipated much
into blocks and steganographically encoding the blocks intower performance from this approach. Instead, we imple-
images. The changes are then flushed from the on-disk caofented our own media server on the web which supports up-
to the online media service. These changes can be detedted, download, search and delete commands. All evalusation
by checking against the manifest of the media sharing servigere done on our media server to model the service provider’s
before uploading. As a final step, the on-disk cache is eraskfdowledge of incoming traffic and account information. The
media server is for evaluation purposes only and we modular-
) ized PicFS so that it would be relatively easy to use a differe
A. The Filesystem media server in the future.

Our implementation of the PicFS filesystem is an installable Figure 3 show our implementation of PicFS and how the
filesystem for Linux. We used FUSE to allow us to buildndividual components interact.

PicFS as a user-level filesystem to simplify the amount of ] o )

work involved [6]. FUSE is composed of a kernel-drivef- Traffic Anonymization with Tor

that communicates with a user-level library that an inatzdé In a public image store, a normal access pattern is for
filesystem can interact with. Specifically, we used FUSE-J,users to upload images or share with their families, friends

Il. | MPLEMENTATION



a Tor network. In this simple example, a PicFS client first
‘ FUSE creates Circuit 1 on three onion routers A, B, and C. In this
case, Flickr sees that a user from router C sends requests to a

a number of images. It is not aware of the fact that the access is

originated by the PicFS client. Nor does Router C. Also, @out
A knows the source of the request but not the destination, and
outer B knows neither the source nor the destination. Tleacli

V V* ¥ uses this circuit for ten minutes. Then a new circuit, Cir@,i
. is created. This way, the accesses originated from one PicFS
End-User On-disk FS Image client are disguised as "normal” photo sharing activitiesam
cache Algorithm Pool .
independent users.

1T

IV. EVALUATION

The evaluation of PicFS is decomposed into two. The first
component of the evaluation evaluates the effectivenetiseof
image generation technique. The second component evaluate

g

Media Sharing the filesystem itself. The filesystem is evaluated on its etpp
| Server (Own for plausible deniability and practicality.
mplementation)

A. Image Generation from Video

Fig. 3. Block diagram of the different subsystems of PicR8racting. The . . . .
thin arrows refer to module communication in the system evitile thicker Evaluating the effectiveness of the image selection algo-

arrows refer to external communication such as network comication or rithm for our purposes is somewhat difficult. Although it is
through the 1/O subsystem of the operating system. relatively simple to test if actual shot changes in a video
sequence are detected, there are probably images besates sh

or anyone with an internet connection around the world. Ong82nges in the video sequence that are different enough to be
uploaded, many images are mostly viewed by others, ratiiggluded in our image set. One study of FI|ck_r users desdribe
than the owners. However, a PicFS client frequently neefid!eW class of photo-takers, who uploaded images more than
to retrieve a set of his/her own images from the web sifiC€ per week, took many "interesting” and "artsy” pictsye

in order to read the hidden contents. To avoid this abnornfdld Were unconcerned with photo privacy [12]. As a result,

access pattern, we utilize Tor network [10] [11], in parigu W€ restricted our evaluation to a qualitative analysis & th
! ’ images selected from distinct video sequences, in the xbnte

its encrypted and periodically updated data channels, evh&l SeiELLE :
the participating routers in each hop have no knowledge 8f the distribution of differences.
data source or destination beyond the current hop. The mairwe used three datasets from different genres to evaluate the

benefit that Tor brings to PicFS is that it helps to blend PicF&1age selection: a short home video of a cat playing with a
accesses into the main stream of image browsing traffic. AJ4t0iS€, part of an animation episode, and part of a popular
result, when a PicFS client reads a file, the traffic to Flickr w t€levision show. Each video sequence had different festure
no longer stands out as the owner suspiciously views his/leé'?_'Ch made some of the metrics more suitable than others. The
own pictures over and over again. On the contrary, it wiihimation sequence had frequent small movements and many
look like just another user on the internet becomes intedestNOt changes, but clearly defined edges. The home video had

in these images and starts to view them. many lighting changes, jerky camera movement, and relgtive
low quality frames. Finally, the television sequence hadano

regular shot patterns, but had dramatic lighting changes an
longer periods of small movements, like talking. Intenagty,
our method yielded a greater number of very different images
for the home video sequence, making it ideal for the purpose
of using home videos to generate images for the filesystem.
Figure 5 illustrates the difference distributions calteda
from the three metrics used for our first dataset, a home
video of a cat playing with a tortoise. The distribution for
each metric is very different, which is expected since each
< Circuit] metric was chosen for its sensitivity to distinct video feas.
«-m> Cireuit2 In addition, the scale of differences detected varies breat
between metrics, emphasizing the importance of an adaptive
Fig. 4. Example of image retrieval with the Tor network. thresholding approach. Figure 6 shows the frame difference
for each difference metric plotted against the frame nuniber
Figure 4 shows how a PicFS client retrieves images vihe sequence.

PICFS
Client

Flickr
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The problem of computing perceived similarity between two
input images remains an open problem in computer graphics.
Fig. 5. Difference distributions, home video. In the future, we hope to apply the latest research in video
shot detection to help alleviate these issues. Fortunatelgt
2000 home videos will not make use of such professional effects.
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1600 f Home Video 2:15 1950 96 49
Television 3:17 14932 258 5.2
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Table | shows the number of images selected from each
video sequence and the percentage yield. Although the per-
centage may seem relatively low, the focus of the approach is
to select images unlikely to arouse suspicion from an oetsid
observer. Thus, the percentage of frames selected from the
video should be very low unless the video itself features
choppy editing and covers many different kinds of scenes.
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Fig. 6. Difference metrics and randomized distributionmieovideo. B. The Filesystem
We have evaluated the implementation of the PicFS such

Finally, Figure 7 shows a plot of the frames that outhat the on-disk cache downloads all images that are on the
algorithm automatically selected from the weighted défeze filesystem on mount. The only other interaction between the
distribution. As expected from the adaptive thresholdipg amedia server and the filesystem is the bulk upload of images
proach, the frames selected all lie at the peaks of the waiighthat are in the allocation table when dismounting and thaewe
difference distribution. We have manually annotated ttaphr not downloaded on mount. This ensures that PicFS minimizes
with descriptions of the action in the video at key points ithe number of photos it must upload and download.
the distribution. See Appendix A for the actual selectedgesa 1) Plausible Deniability: To show that the types of access
corresponding to the figure annotations. of this filesystem are consistent with plausible deniabilite

For brevity, we omit the plots from our other datasets. Almust show that the file access patterns are consistent with a
though the distributions for the other datasets are sinthere few API tools of a media sharing service. We use Flickr as the
are significantly more false positives (overly similar fresh media sharing service to evaluate against since it is a popul
selected in the television and animated sequence dat@bets. photo-sharing service and has many popular tools that take
algorithm seems particularly prone to false positivesltegy advantage of its API [2].
from professional camera effects (subtle fades, crossleiss Among the various applications that use the API there are at
camera spinning around the scene), and long scenes with sreast two applications that exhibit similar behavior to FieFS
amounts of motion, like talking sequences. We believe this prototype. These two are FlickrFS [13] and Gnicker [14].
because the difference metrics do not provide a good enouigiese applications both exhibit bulk download on startup



(request most images on Flickr) and bulk upload on exit V. RELATED WORK

(synchronize on exit). _ _ _ “There is a rich body of work concerning steganographic

These are exactly the semantics of PicFS. When PicFSidgnhniques for media, although many methods use steganogra
mounted, the on-disk cache fetches many images in bulk WheR, for watermarking, rather than information hiding. A fide
it reads in 'Fhe allocatllon map and all fllgs in t.he aIIogatmtpm class of techniques is Quantization Index Modulation (QIM)
Once the filesystem is mounted, there is no interaction EtWeyhich maps content values to a set of possible encoded values
the filesystem and the media-sharing service until dismouQfhich are then embedded invisibly into an image [16]. QIM,
On dismount a large n_umber of files are uploaded. Th_e f“%ﬁginally a watermarking technique, is more robust to imag
that are uploaded are different from the ones downloaded. Tqgification than many other algorithms and can be made less
can be seen as a synching operation. As a result, PicFS gafctable with statistical restoration, a process whitsepts
mimic other applications and preserves plausible deriabil 15 restore the statistical properties of the cover imagd. [17

2) Practicality: Our target system for the evaluation of oupye to the higher amount of information that can be encoded
prototype system is on a virtualized Ubuntu operating syst&n each image, PicFS uses the F5 algorithm that encodes
running on VMWare Server. The hardware of the system is &ormation in the lowest significant bit of image pixels [8]
Intel Core Duo running at 2.4 GHz with 2GB of RAM. The yser anonymization to dissociate IP addresses from web
block size for our filesystem was kept at 2KB. Finally, sincgaffic has been well studied in the context of privacy. The de
indirect blocks have not yet been implemented in PicFS, thg|opers of FreeNet employ a distributed filesystem buiérov
file sizes are limited to 24 KB (with twelve) direct blocks. an0nymous networks. However, this approach does not agldres
At this time, our filesystem decodes all the blocks of )| privacy as it requires some trust of all other users of
file on open. This, unfortunately, precluded the use of magye system [18]. Goldschlag et al. presented the onion route
popular benchmarking software since they do not take infghich allows users to achieve anonymous communication on
account the amount of time it takes to open a file. This iS{fe |nternet by hiding among a group of other users [19].
good point for f_uture work since there is a definite trade-qﬁfhis approach was used in APFS (Anonymous Peer-to-peer
between decoding blocks all at once or on-demand decodifgle Sharing), which aims to preserve privacy of file sharers
Depending on the usage of a file, one may be much betigry p2p network [20]. PicFS uses Tor, an implementation
than the other. Figure 8 shown below shows the performangesecond generation onion routing [10] [11]. Tor utilizes a
taking into account both opens and closes for reads andswritgyeriay network of onion routers to create random circuits

from source to destination, replacing traditional diremites.
Anonymity is then achieved through disguising the idegiti
of both the sender and receiver.

Finally, although the subject of finding plausible images
for steganography has not been directly studied, numerous
techniques exist in computer graphics for constructingehov
images from some initial seed set. Methods range from tra-
ditional morphing techniques to advanced image-based ren-
dering, which uses a base set of images to interpolate or
extrapolate realistic novel views from the proper combina-
tions of the input images [21] [22]. However, these methods
C s . 16 are insufficient for automatically generating images ag the

File Size (KB) require too much knowledge of relationships between a large
set of seed pictures to use effectively. Instead, we rely on

Fig. 8. Performance of reads and writes on a file of differiimps These @ large body of work on detecting distinct shots in video
reads and writes involve reading and writing to the entiigtyhe file. sequences [23] [24]_

KBisec
o - N w L o [e)] =l o]
. . . . .

It is important to note that this performance has been VI. CONCLUSION
measured in KB/sec. As a reference, the host filesystem YExt3In this paper we present PicFS, a filesystem that provides
measured using 10zone [15], a popular benchmarking suigelf-enforcing privacy while using an untrusted media sttar
measured writes on the order of 100 MB/sec and reads on gevices for storage. PicFS represents a realizable dasign
order of 1 GB/sec! Clearly, there is a large price to privacy a implementation as well as a sound way to generate thousands
the practicality of the prototype for normal use filesystesn iof plausible, unique images from home video sequences. With
insufficient. However, as the filesystem being used with fifes this filesystem, users will be able to share their infornmatio
small sizes (order of KB or small order of MB), is sufficientwith chosen individuals using the vast resources of media
There are also remain many possibilities in optimizing thgharing services - without sacrificing privacy to the segsic
performance by using better caching and encoding/decodingdlithough we discuss some optimizations, performance is
mechanisms. At present time, the largest overhead is in that a focus. This stems mostly from the fact that we are
steganographic method. building a filesystem to provide plausible deniability befo



everything else. We provide an Image-Based On-Disk cacfie] B. Chen and G. W. Wornell, “Quantization index modwatimethods
to improve performance, but there are many other possible for digital watermarking and information embedding of nmakdia,” J.

enhancements. The most promising is an in-memory cac 8

although it could negatively impact plausible deniabil®ther
possible enhancements include pre-fetching and pre-dtegod

PicFS is a network filesystem implementation of a filesys[;IS]

tem that supports plausible deniability. However, it would
be more versatile as a distributed filesystem incorporating

technologies like CFS [25], Chord [26], or Symphony [27][.19]

By moving to a distributed model, PicFS could potentially
provide better protections against suspicious hot spotseils
as improve performance with a distributed cache infrastinec

Images are a useful steganography medium, but it is possible

that methods for video steganography might offer grea

capacity for encoding information. Video sharing sites to-

[20]

%

day are prominent and the great variety of videos currently
uploaded to sites such as YouTube could provide excelldfd!
opportunities for hiding data, although the upload forneats
typically restrictive. We would also like to explore techoes
to make our image selection algorithm sensitive to qualitié?3]

of images that make them more robust against steganalysis.

Some possible directions for this approach include priefgrr
images with high amounts of texture and certain kinds ofaoigd24l
or even filtering images slightly to improve statistics.
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APPENDIXA

A CASE STUDY. IMAGES TAKEN FROM A HOME VIDEO

LR

(a) Frame 245: shot change frofh) Frame 493: camera follows
cat to turtle cat

(c) Frame 523: camera moves tdd) Frame 858: cat rolls over
follow action



